Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2018, Volume 30, Issue 3, Pages 127–140
DOI: https://doi.org/10.4213/dm1494
(Mi dm1494)
 

This article is cited in 2 scientific papers (total in 2 papers)

On weak positive predicates over a finite set

S. N. Selezneva

Lomonosov Moscow State University
Full-text PDF (475 kB) Citations (2)
References:
Abstract: Predicates that are preserved by a semi-lattice function are considered. These predicates are called weak positive. A representation of these predicates are proposed in the form of generalized conjunctive normal forms (GCNFs). Properties of GCNFs of these predicates are obtained. Based on the properties obtained, more efficient polynomial-time algorithms are proposed for solving the generalized satisfiability problem in the case when all initial predicates are preserved by a certain semi-lattice function.
Keywords: predicate over a finite set, function over a finite set, semi-lattice function, weak positive predicate, conjunctive normal form, generalized satisfiability problem (constraints satisfaction problem), polynomial-time problem.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00782-а
Received: 04.01.2018
English version:
Discrete Mathematics and Applications, 2020, Volume 30, Issue 3, Pages 203–213
DOI: https://doi.org/10.1515/dma-2020-0019
Bibliographic databases:
Document Type: Article
UDC: 519.716
Language: Russian
Citation: S. N. Selezneva, “On weak positive predicates over a finite set”, Diskr. Mat., 30:3 (2018), 127–140; Discrete Math. Appl., 30:3 (2020), 203–213
Citation in format AMSBIB
\Bibitem{Sel18}
\by S.~N.~Selezneva
\paper On weak positive predicates over a finite set
\jour Diskr. Mat.
\yr 2018
\vol 30
\issue 3
\pages 127--140
\mathnet{http://mi.mathnet.ru/dm1494}
\crossref{https://doi.org/10.4213/dm1494}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2084574}
\elib{https://elibrary.ru/item.asp?id=35410175}
\transl
\jour Discrete Math. Appl.
\yr 2020
\vol 30
\issue 3
\pages 203--213
\crossref{https://doi.org/10.1515/dma-2020-0019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000542101200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087199200}
Linking options:
  • https://www.mathnet.ru/eng/dm1494
  • https://doi.org/10.4213/dm1494
  • https://www.mathnet.ru/eng/dm/v30/i3/p127
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:355
    Full-text PDF :31
    References:43
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024