Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2019, Volume 31, Issue 1, Pages 21–55
DOI: https://doi.org/10.4213/dm1488
(Mi dm1488)
 

This article is cited in 3 scientific papers (total in 3 papers)

Large deviations of generalized renewal process

G. A. Bakai, A. V. Shklyaev

Lomonosov Moscow State University
Full-text PDF (659 kB) Citations (3)
References:
Abstract: Let $(\xi(i),\eta(i))\in\mathbb{R}^{d+1}, 1 \le i < \infty$, be independent identically distributed random vectors, $\eta(i)$ be nonnegative random variables, the vector $(\xi(1),\eta(1))$ satisfy the Cramer condition. On the base of renewal process $N_T = \max\{k:\eta(1)+\ldots+\eta(k)~\le~T\}$ we define the generalized renewal process $Z_T=\sum_{i=1}^{N_T} \xi(i)$. Put $I_{\Delta_T}(x)=\{y\in\mathbb{R}^d\colon x_j\le y_j<x_j+\Delta_T,\; j=1,\ldots,d\}$. We find asymptotic formulas for the probabilities ${\mathbf P}\left(Z_T \in I_{\Delta_T}(x)\right)$ as $\Delta_T\to 0$ and ${\mathbf P}\left(Z_T = x \right)$ in non-lattice and arithmetic cases, respectively, in a wide range of $x$ values, including normal, moderate, and large deviations. The analogous results were obtained for a process with delay in which the distribution of $(\xi(1),\eta(1))$ differs from the distribution on the other steps. Using these results, we prove local limit theorems for processes with regeneration and for additive functionals of finite Markov chains, including normal, moderate, and large deviations.
Keywords: generalized renewal process, Cramer condition, large deviations, local limit theorems, integro-local limit theorems.
Received: 01.12.2017
Revised: 24.07.2018
English version:
Discrete Mathematics and Applications, 2020, Volume 30, Issue 4, Pages 215–241
DOI: https://doi.org/10.1515/dma-2020-0020
Bibliographic databases:
Document Type: Article
UDC: 519.218.4
Language: Russian
Citation: G. A. Bakai, A. V. Shklyaev, “Large deviations of generalized renewal process”, Diskr. Mat., 31:1 (2019), 21–55; Discrete Math. Appl., 30:4 (2020), 215–241
Citation in format AMSBIB
\Bibitem{BakShk19}
\by G.~A.~Bakai, A.~V.~Shklyaev
\paper Large deviations of generalized renewal process
\jour Diskr. Mat.
\yr 2019
\vol 31
\issue 1
\pages 21--55
\mathnet{http://mi.mathnet.ru/dm1488}
\crossref{https://doi.org/10.4213/dm1488}
\elib{https://elibrary.ru/item.asp?id=37045013}
\transl
\jour Discrete Math. Appl.
\yr 2020
\vol 30
\issue 4
\pages 215--241
\crossref{https://doi.org/10.1515/dma-2020-0020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000560828600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85091327434}
Linking options:
  • https://www.mathnet.ru/eng/dm1488
  • https://doi.org/10.4213/dm1488
  • https://www.mathnet.ru/eng/dm/v31/i1/p21
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:519
    Full-text PDF :104
    References:67
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024