Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2018, Volume 30, Issue 4, Pages 66–87
DOI: https://doi.org/10.4213/dm1487
(Mi dm1487)
 

Classification of distance-transitive orbital graphs of overgroups of the Jevons group

B. A. Pogorelova, M. A. Pudovkinab

a Academy of Cryptography of Russian Federation
b Bauman Moscow State Technical University
References:
Abstract: The Jevons group $A{\tilde S_n}$ is an isometry group of the Hamming metric on the $n$-dimensional vector space ${V_n}$ over $GF(2)$. It is generated by the group of all permutation $(n \times n)$-matrices over $GF(2)$ and the translation group on ${V_n}$. Earlier the authors of the present paper classified the submetrics of the Hamming metric on ${V_n}$ for $n \geqslant 4$, and all overgroups of $A{\tilde S_n}$ which are isometry groups of these overmetrics. In turn, each overgroup of $A{\tilde S_n}$ is known to define orbital graphs whose “natural” metrics are submetrics of the Hamming metric. The authors also described all distance-transitive orbital graphs of overgroups of the Jevons group $A{\tilde S_n}$. In the present paper we classify the distance-transitive orbital graphs of overgroups of the Jevons group. In particular, we show that some distance-transitive orbital graphs are isomorphic to the following classes: the complete graph ${K_{{2^n}}}$, the complete bipartite graph ${K_{{2^{n - 1}}{{,2}^{n - 1}}}}$, the halved $(n + 1)$-cube, the folded $(n + 1)$-cube, the graphs of alternating forms, the Taylor graph, the Hadamard graph, and incidence graphs of square designs.
Keywords: orbital graph, the Jevons group, distance-transitive graphs, Hamming graph, Taylor graph, Hadamard graph.
Received: 28.11.2017
English version:
Discrete Mathematics and Applications, 2020, Volume 30, Issue 1, Pages 7–22
DOI: https://doi.org/10.1515/dma-2020-0002
Bibliographic databases:
Document Type: Article
UDC: 519.172+512.542.7
Language: Russian
Citation: B. A. Pogorelov, M. A. Pudovkina, “Classification of distance-transitive orbital graphs of overgroups of the Jevons group”, Diskr. Mat., 30:4 (2018), 66–87; Discrete Math. Appl., 30:1 (2020), 7–22
Citation in format AMSBIB
\Bibitem{PogPud18}
\by B.~A.~Pogorelov, M.~A.~Pudovkina
\paper Classification of distance-transitive orbital graphs of overgroups of the Jevons group
\jour Diskr. Mat.
\yr 2018
\vol 30
\issue 4
\pages 66--87
\mathnet{http://mi.mathnet.ru/dm1487}
\crossref{https://doi.org/10.4213/dm1487}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3884629}
\elib{https://elibrary.ru/item.asp?id=36447993}
\transl
\jour Discrete Math. Appl.
\yr 2020
\vol 30
\issue 1
\pages 7--22
\crossref{https://doi.org/10.1515/dma-2020-0002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85080862748}
Linking options:
  • https://www.mathnet.ru/eng/dm1487
  • https://doi.org/10.4213/dm1487
  • https://www.mathnet.ru/eng/dm/v30/i4/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:387
    Full-text PDF :73
    References:49
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024