Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2017, Volume 29, Issue 4, Pages 130–142
DOI: https://doi.org/10.4213/dm1474
(Mi dm1474)
 

This article is cited in 3 scientific papers (total in 3 papers)

On bijunctive predicates over a finite set

S. N. Selezneva

Lomonosov Moscow State University
Full-text PDF (477 kB) Citations (3)
References:
Abstract: The paper is concerned with representations of predicates over a finite set in the form of generalized conjunctive normal forms (GCNF). Properties of predicates GCNF are found which are preserved by some majority function. Such predicates are called generalized bijunctive predicates. These properties are used to construct new faster polynomial algorithms for the generalized satisfiability problem in the case when some majority function preserves all the original predicates.
Keywords: predicate over a finite set, function over a finite set, majority function, bijunctive predicate, conjunctive normal form, generalized satisfiability problem (constraint satisfaction problems), polynomial problem.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00782-а
Received: 10.10.2017
Revised: 16.11.2017
English version:
Discrete Mathematics and Applications, 2019, Volume 29, Issue 1, Pages 49–58
DOI: https://doi.org/10.1515/dma-2019-0006
Bibliographic databases:
Document Type: Article
UDC: 519.716
Language: Russian
Citation: S. N. Selezneva, “On bijunctive predicates over a finite set”, Diskr. Mat., 29:4 (2017), 130–142; Discrete Math. Appl., 29:1 (2019), 49–58
Citation in format AMSBIB
\Bibitem{Sel17}
\by S.~N.~Selezneva
\paper On bijunctive predicates over a~finite set
\jour Diskr. Mat.
\yr 2017
\vol 29
\issue 4
\pages 130--142
\mathnet{http://mi.mathnet.ru/dm1474}
\crossref{https://doi.org/10.4213/dm1474}
\elib{https://elibrary.ru/item.asp?id=30737815}
\transl
\jour Discrete Math. Appl.
\yr 2019
\vol 29
\issue 1
\pages 49--58
\crossref{https://doi.org/10.1515/dma-2019-0006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000459400000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062537612}
Linking options:
  • https://www.mathnet.ru/eng/dm1474
  • https://doi.org/10.4213/dm1474
  • https://www.mathnet.ru/eng/dm/v29/i4/p130
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :56
    References:51
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024