Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2020, Volume 32, Issue 1, Pages 8–26
DOI: https://doi.org/10.4213/dm1444
(Mi dm1444)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the dependence of the complexity and depth of reversible circuits consisting of NOT, CNOT, and 2-CNOT gates on the number of additional inputs

D. V. Zakablukov

Tver State University
Full-text PDF (560 kB) Citations (2)
References:
Abstract: The paper is concerned with the complexity and depth of reversible circuits consisting of NOT, CNOT, and 2-CNOT gates under constraints on the number of additional inputs. We study the Shannon functions for the complexity $L(n, q)$ and depth $D(n,q)$ of a reversible circuit implementing a map $f\colon \mathbb{Z}_2^n \to \mathbb{Z}_2^n$ under the condition that the number of additional inputs $q$ is in the range $8n < q \lesssim n2^{n-\lceil n \mathop / \phi(n)\rceil}$, where $\phi(n) \to \infty$ and $n \mathop / \phi(n) - \log_2 n \to \infty$ as $n \to \infty$. We establish the upper estimates $L(n,q) \lesssim 2^n + 8n2^n \mathop / (\log_2 (q-4n) - \log_2 n - 2)$ and $D(n,q) \lesssim 2^{n+1}(2,5 + \log_2 n - \log_2 (\log_2 (q - 4n) - \log_2 n - 2))$ for this range of $q$. The asymptotics $L(n,q) \asymp n2^n \mathop / \log_2 q$ is established for $q$ such that $n^2 \lesssim q \lesssim n2^{n-\lceil n \mathop / \phi(n)\rceil}$, where $\phi(n) \to \infty$ and $n \mathop / \phi(n) - \log_2 n \to \infty$ as $n \to \infty$.
Keywords: reversible circuits, circuit complexity, circuit depth, computations with memory.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00196 A
Received: 05.04.2017
Revised: 05.02.2020
English version:
Discrete Mathematics and Applications, 2021, Volume 31, Issue 1, Pages 61–75
DOI: https://doi.org/10.1515/dma-2021-0006
Bibliographic databases:
Document Type: Article
UDC: 519.714, 004.312
Language: Russian
Citation: D. V. Zakablukov, “On the dependence of the complexity and depth of reversible circuits consisting of NOT, CNOT, and 2-CNOT gates on the number of additional inputs”, Diskr. Mat., 32:1 (2020), 8–26; Discrete Math. Appl., 31:1 (2021), 61–75
Citation in format AMSBIB
\Bibitem{Zak20}
\by D.~V.~Zakablukov
\paper On the dependence of the complexity and depth of reversible circuits consisting of NOT, CNOT, and 2-CNOT gates on the number of additional inputs
\jour Diskr. Mat.
\yr 2020
\vol 32
\issue 1
\pages 8--26
\mathnet{http://mi.mathnet.ru/dm1444}
\crossref{https://doi.org/10.4213/dm1444}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4075899}
\elib{https://elibrary.ru/item.asp?id=46746004}
\transl
\jour Discrete Math. Appl.
\yr 2021
\vol 31
\issue 1
\pages 61--75
\crossref{https://doi.org/10.1515/dma-2021-0006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000621785400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85101540462}
Linking options:
  • https://www.mathnet.ru/eng/dm1444
  • https://doi.org/10.4213/dm1444
  • https://www.mathnet.ru/eng/dm/v32/i1/p8
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :59
    References:27
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024