Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2017, Volume 29, Issue 3, Pages 24–37
DOI: https://doi.org/10.4213/dm1443
(Mi dm1443)
 

This article is cited in 1 scientific paper (total in 1 paper)

The square root law in the embedding detection problem for Markov chains with unknown matrix of transition probabilities\footnote{The paper is published by the recommendation of the Program Commitee of the CTCrypt'2016 Conference.}

A. V. Volgin

Moscow Technological University
Full-text PDF (566 kB) Citations (1)
References:
Abstract: We consider the classical model of embeddings in a simple binary Markov chain with unknown transition probability matrix. We obtain conditions on the asymptotic growth of lengths of the original and embedded sequences sufficient for the consistency of the proposed statistical embedding detection test.
Keywords: Markov chain, embeddings, statistical test.
Received: 05.09.2016
English version:
Discrete Mathematics and Applications, 2019, Volume 29, Issue 1, Pages 59–68
DOI: https://doi.org/10.1515/dma-2019-0007
Bibliographic databases:
UDC: 519.246.3
Language: Russian
Citation: A. V. Volgin, “The square root law in the embedding detection problem for Markov chains with unknown matrix of transition probabilities\footnote{The paper is published by the recommendation of the Program Commitee of the CTCrypt'2016 Conference.}”, Diskr. Mat., 29:3 (2017), 24–37; Discrete Math. Appl., 29:1 (2019), 59–68
Citation in format AMSBIB
\Bibitem{Vol17}
\by A.~V.~Volgin
\paper The square root law in the embedding detection problem for Markov chains with unknown matrix of transition probabilities\footnote{The paper is published by the recommendation of the Program Commitee of the CTCrypt'2016 Conference.}
\jour Diskr. Mat.
\yr 2017
\vol 29
\issue 3
\pages 24--37
\mathnet{http://mi.mathnet.ru/dm1443}
\crossref{https://doi.org/10.4213/dm1443}
\elib{https://elibrary.ru/item.asp?id=29887799}
\transl
\jour Discrete Math. Appl.
\yr 2019
\vol 29
\issue 1
\pages 59--68
\crossref{https://doi.org/10.1515/dma-2019-0007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000459400000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062561003}
Linking options:
  • https://www.mathnet.ru/eng/dm1443
  • https://doi.org/10.4213/dm1443
  • https://www.mathnet.ru/eng/dm/v29/i3/p24
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:426
    Full-text PDF :76
    References:48
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024