Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2017, Volume 29, Issue 3, Pages 3–23
DOI: https://doi.org/10.4213/dm1436
(Mi dm1436)
 

This article is cited in 10 scientific papers (total in 10 papers)

On the structure of digraphs of polynomial transformations over finite commutative rings with unity

V. E. Viktorenkov
References:
Abstract: The paper describes structural characteristics of the digraph of an arbitrary polynomial transformation of a finite commutative ring with unity. A classification of vertices of the digraph is proposed: cyclic elements, initial elements, and branch points are described. Quantitative results on such objects and heights of vertices are given. Besides, polynomial transformations are shown to have cycles whose lengths coincide with the lengths of cycles of the induced polynomial transformation over the field $R/\Re$, where $\Re$ is the radical of the finite commutative local ring $R$.
Keywords: digraph, polynomial transformation, finite commutative ring.
Received: 25.05.2017
English version:
Discrete Mathematics and Applications, 2018, Volume 28, Issue 3, Pages 259–274
DOI: https://doi.org/10.1515/dma-2018-0023
Bibliographic databases:
UDC: 519.172.3+519.113.6
Language: Russian
Citation: V. E. Viktorenkov, “On the structure of digraphs of polynomial transformations over finite commutative rings with unity”, Diskr. Mat., 29:3 (2017), 3–23; Discrete Math. Appl., 28:3 (2018), 259–274
Citation in format AMSBIB
\Bibitem{Vik17}
\by V.~E.~Viktorenkov
\paper On the structure of digraphs of polynomial transformations over finite commutative rings with unity
\jour Diskr. Mat.
\yr 2017
\vol 29
\issue 3
\pages 3--23
\mathnet{http://mi.mathnet.ru/dm1436}
\crossref{https://doi.org/10.4213/dm1436}
\elib{https://elibrary.ru/item.asp?id=29887798}
\transl
\jour Discrete Math. Appl.
\yr 2018
\vol 28
\issue 3
\pages 259--274
\crossref{https://doi.org/10.1515/dma-2018-0023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000442245400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053133300}
Linking options:
  • https://www.mathnet.ru/eng/dm1436
  • https://doi.org/10.4213/dm1436
  • https://www.mathnet.ru/eng/dm/v29/i3/p3
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024