|
This article is cited in 1 scientific paper (total in 1 paper)
On the number of integer points in a multidimensional domain
A. S. Rybakov
Abstract:
We provide a new upper estimate for the modulus of the difference $|\Lambda\cap {\cal S}|-{\rm vol }_n({\cal S})/{\rm det }\,\Lambda$, where ${\cal S}\subset \mathbb R^n$ is a set of volume ${\rm vol }_n({\cal S})$ and $\Lambda\subset \mathbb R^n$ is a complete lattice with determinant ${\rm det }\,\Lambda$. This result has an important practical application, for example, in estimating the number of integer solutions of an arbitrary system of linear and nonlinear inequalities.
Keywords:
integer lattice, number of integer points, Gaussian volume heuristic.
Received: 22.05.2017
Citation:
A. S. Rybakov, “On the number of integer points in a multidimensional domain”, Diskr. Mat., 29:4 (2017), 106–120; Discrete Math. Appl., 28:6 (2018), 385–395
Linking options:
https://www.mathnet.ru/eng/dm1435https://doi.org/10.4213/dm1435 https://www.mathnet.ru/eng/dm/v29/i4/p106
|
Statistics & downloads: |
Abstract page: | 437 | Full-text PDF : | 74 | References: | 52 | First page: | 23 |
|