Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2004, Volume 16, Issue 1, Pages 79–94
DOI: https://doi.org/10.4213/dm143
(Mi dm143)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the complexity of the realization of Zhegalkin polynomials

R. N. Zabaluev
References:
Abstract: We show that the complexity of a Zhegalkin polynomial of degree $k$, $2\le k\le n$, does not exceed
$$ \sum_{i=0}^{k}\binom ni/\log_2\sum_{i=0}^{k}\binom ni(1+o(1)), $$
(as $n\to\infty$) and asymptotically coincides with this number for almost all such polynomials. We also show that the complexity of any homogeneous Zhegalkin polynomial of degree $k$ (for most values of $k$) does not exceed
$$ \binom nk/\log_2 \binom nk(1+o(1)), $$
(as $n\to\infty$) and asymptotically coincides with this number for almost all such polynomials.
Received: 13.11.2003
English version:
Discrete Mathematics and Applications, 2004, Volume 14, Issue 2, Pages 173–189
DOI: https://doi.org/10.1515/156939204872329
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: R. N. Zabaluev, “On the complexity of the realization of Zhegalkin polynomials”, Diskr. Mat., 16:1 (2004), 79–94; Discrete Math. Appl., 14:2 (2004), 173–189
Citation in format AMSBIB
\Bibitem{Zab04}
\by R.~N.~Zabaluev
\paper On the complexity of the realization of Zhegalkin polynomials
\jour Diskr. Mat.
\yr 2004
\vol 16
\issue 1
\pages 79--94
\mathnet{http://mi.mathnet.ru/dm143}
\crossref{https://doi.org/10.4213/dm143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2069990}
\zmath{https://zbmath.org/?q=an:1122.06013}
\transl
\jour Discrete Math. Appl.
\yr 2004
\vol 14
\issue 2
\pages 173--189
\crossref{https://doi.org/10.1515/156939204872329}
Linking options:
  • https://www.mathnet.ru/eng/dm143
  • https://doi.org/10.4213/dm143
  • https://www.mathnet.ru/eng/dm/v16/i1/p79
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024