Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2017, Volume 29, Issue 2, Pages 109–132
DOI: https://doi.org/10.4213/dm1422
(Mi dm1422)
 

This article is cited in 1 scientific paper (total in 1 paper)

Local limit theorems for one class of distributions in probabilistic combinatorics

A. N. Timashev

Institute of Cryptography, Communications and Informatics, Academy of Federal Security Service of Russian Federation, Moscow
Full-text PDF (520 kB) Citations (1)
References:
Abstract: Let a function $f(z)$ be decomposed into a power series with nonnegative coefficients which converges in a circle of positive radius $R.$ Let the distribution of the random variable $\xi_n$, $n\in\{1,2,\ldots\}$, be defined by the formula
$$P\{\xi_n=N\}=\frac{\mathrm{coeff}_{z^n}\left(\frac{\left(f(z)\right)^N}{N!}\right)}{\mathrm{coeff}_{z^n}\left(\exp(f(z))\right)},\,N=0,1,\ldots$$
for some $|z|<R$ (if the denominator is positive). Examples of appearance of such distributions in probabilistic combinatorics are given. Local theorems on asymptotical normality for distributions of $\xi_n$ are proved in two cases: a) if $ f(z) = (1-z)^{-\la}, \, \la = \mathrm {const} \in(0,1]$ for $|z| <1$, and b) if all positive coefficients of expansion $ f (z) $ in a power series are equal to 1 and the set $A$ of their numbers has the form
$$ A = \{m^r \, | \, m \in \mathbb{N} \}, \, \, r = \mathrm {const},\; r \in \{2,3,\ldots\}.$$
A hypothetical general local limit normal theorem for random variables $ \xi_n$ is stated. Some examples of validity of the statement of this theorem are given.
Keywords: power series distributions, local asymptotical normality.
Received: 16.03.2017
English version:
Discrete Mathematics and Applications, 2018, Volume 28, Issue 6, Pages 405–420
DOI: https://doi.org/10.1515/dma-2018-0036
Bibliographic databases:
Document Type: Article
UDC: 519.214+519.212.2
Language: Russian
Citation: A. N. Timashev, “Local limit theorems for one class of distributions in probabilistic combinatorics”, Diskr. Mat., 29:2 (2017), 109–132; Discrete Math. Appl., 28:6 (2018), 405–420
Citation in format AMSBIB
\Bibitem{Tim17}
\by A.~N.~Timashev
\paper Local limit theorems for one class of distributions in probabilistic combinatorics
\jour Diskr. Mat.
\yr 2017
\vol 29
\issue 2
\pages 109--132
\mathnet{http://mi.mathnet.ru/dm1422}
\crossref{https://doi.org/10.4213/dm1422}
\elib{https://elibrary.ru/item.asp?id=29437299}
\transl
\jour Discrete Math. Appl.
\yr 2018
\vol 28
\issue 6
\pages 405--420
\crossref{https://doi.org/10.1515/dma-2018-0036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000452905000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058798322}
Linking options:
  • https://www.mathnet.ru/eng/dm1422
  • https://doi.org/10.4213/dm1422
  • https://www.mathnet.ru/eng/dm/v29/i2/p109
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :40
    References:48
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024