Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2004, Volume 16, Issue 1, Pages 52–78
DOI: https://doi.org/10.4213/dm142
(Mi dm142)
 

This article is cited in 5 scientific papers (total in 5 papers)

The standard basis of a polynomial ideal over a commutative Artinian chain ring

E. V. Gorbatov
References:
Abstract: We construct a standard basis of an ideal of the polynomial ring $R[X]=R[x_1,\ldots,x_k]$ over commutative Artinian chain ring $R$, which generalises a Gröbner base of a polynomial ideal over fields. We adopt the notion of the leading term of a polynomial suggested by D. A. Mikhailov and A. A. Nechaev, but using the simplification schemes introduced by V. N. Latyshev. We prove that any canonical generating system constructed by D. A. Mikhailov and A. A. Nechaev is a standard basis of the special form. We give an algorithm (based on the notion of $S$-polynomial) which constructs standard bases and canonical generating systems of an ideal. We define minimal and reduced standard bases and give their characterisations. We prove that a Gröbner base $\chi$ of a polynomial ideal over the field $\bar R=R/\operatorname{rad}(R)$ can be lifted to a standard basis of the same cardinality over $R$ with respect to the natural epimorphism $\nu\colon R[X]\to \bar R[X]$ if and only if there is an ideal $I\triangleleft R[X]$ such that $I$ is a free $R$-module and $\bar{I}=(\chi)$.
The research was supported by the Russian Foundation for Basic Research, grant 02-01-00218, and by the President of the Russian Federation program of support of leading scientific schools, grant 1910.2003.1.
Received: 10.11.2003
English version:
Discrete Mathematics and Applications, 2004, Volume 14, Issue 1, Pages 75–101
DOI: https://doi.org/10.1515/156939204774148820
Bibliographic databases:
UDC: 512.8
Language: Russian
Citation: E. V. Gorbatov, “The standard basis of a polynomial ideal over a commutative Artinian chain ring”, Diskr. Mat., 16:1 (2004), 52–78; Discrete Math. Appl., 14:1 (2004), 75–101
Citation in format AMSBIB
\Bibitem{Gor04}
\by E.~V.~Gorbatov
\paper The standard basis of a polynomial ideal over a commutative Artinian chain ring
\jour Diskr. Mat.
\yr 2004
\vol 16
\issue 1
\pages 52--78
\mathnet{http://mi.mathnet.ru/dm142}
\crossref{https://doi.org/10.4213/dm142}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2069989}
\zmath{https://zbmath.org/?q=an:1096.13034}
\transl
\jour Discrete Math. Appl.
\yr 2004
\vol 14
\issue 1
\pages 75--101
\crossref{https://doi.org/10.1515/156939204774148820}
Linking options:
  • https://www.mathnet.ru/eng/dm142
  • https://doi.org/10.4213/dm142
  • https://www.mathnet.ru/eng/dm/v16/i1/p52
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024