Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2017, Volume 29, Issue 1, Pages 3–9
DOI: https://doi.org/10.4213/dm1401
(Mi dm1401)
 

Solving systems of linear Boolean equations with noisy right-hand sides over the reals

E. K. Alekseev, I. B. Oshkin, V. O. Popov, S. V. Smyshlyaev

ООО «Крипто-Про»
References:
Abstract: The paper is concerned with the problem of solution of a system of linear equations with noisy right-hand side in the following setting: one knows a random $m\times N$-matrix $A$ with entries from $\{-1,1\}$ and a vector $xA+\xi\in \R^N$, where $\xi$ is the noise vector from $\R^N$, whose entries are independent realizations of a normally distributed random variable with parameters $0$ and $\sigma^2$, and $x$ is a random vector with coordinates from $\{-1,1\}$. The sought-for parameter is the vector $x$. We propose a method for constructing a set containing the sought-for vector with probability not smaller than the given one and estimate the cardinality of this set. Theoretical calculations of the parameters of the method are illustrated by experiments demonstrating the practical implementability of the method for cases when direct enumeration of all possible values of $x$ is unfeasible.
Keywords: system of linear equations with noisy right-hand side, additive Gaussian noise.
Received: 30.06.2016
Revised: 30.11.2016
English version:
Discrete Mathematics and Applications, 2018, Volume 28, Issue 1, Pages 1–5
DOI: https://doi.org/10.1515/dma-2018-0001
Bibliographic databases:
Document Type: Article
UDC: 519.719.2+519.233
Language: Russian
Citation: E. K. Alekseev, I. B. Oshkin, V. O. Popov, S. V. Smyshlyaev, “Solving systems of linear Boolean equations with noisy right-hand sides over the reals”, Diskr. Mat., 29:1 (2017), 3–9; Discrete Math. Appl., 28:1 (2018), 1–5
Citation in format AMSBIB
\Bibitem{AleOshPop17}
\by E.~K.~Alekseev, I.~B.~Oshkin, V.~O.~Popov, S.~V.~Smyshlyaev
\paper Solving systems of linear Boolean equations with noisy right-hand sides over the reals
\jour Diskr. Mat.
\yr 2017
\vol 29
\issue 1
\pages 3--9
\mathnet{http://mi.mathnet.ru/dm1401}
\crossref{https://doi.org/10.4213/dm1401}
\elib{https://elibrary.ru/item.asp?id=28405131}
\transl
\jour Discrete Math. Appl.
\yr 2018
\vol 28
\issue 1
\pages 1--5
\crossref{https://doi.org/10.1515/dma-2018-0001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425893900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054995783}
Linking options:
  • https://www.mathnet.ru/eng/dm1401
  • https://doi.org/10.4213/dm1401
  • https://www.mathnet.ru/eng/dm/v29/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024