Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2016, Volume 28, Issue 4, Pages 150–157
DOI: https://doi.org/10.4213/dm1399
(Mi dm1399)
 

This article is cited in 3 scientific papers (total in 3 papers)

On serial rings

A. A. Tuganbaevab

a Lomonosov Moscow State University
b National Research University "Moscow Power Engineering Institute"
Full-text PDF (438 kB) Citations (3)
References:
Abstract: Let A be a ring such that all maximal indecomposable factor rings $A_i$ of $A$ are serial rings. Then every square matrix over $A$ is diagonalizable. In addition, if all the rings $A_i$ are Bezout rings, then every rectangular matrix over $A$ is diagonalizable. If $\varphi$ is an automorphism of the ring $A$, then the skew Laurent series ring $A((x,\varphi ))$ is a serial ring if and only if $A$ is a serial Artinian ring.
Keywords: serial ring, Bezout ring, diagonalizable ring, skew Laurent series ring.
Funding agency Grant number
Russian Science Foundation 16-11-10013
The study is supported by Russian Science Foundation (project no. 16-11-10013).
Received: 24.07.2016
English version:
Discrete Mathematics and Applications, 2017, Volume 27, Issue 2, Pages 131–135
DOI: https://doi.org/10.1515/dma-2017-0016
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: Russian
Citation: A. A. Tuganbaev, “On serial rings”, Diskr. Mat., 28:4 (2016), 150–157; Discrete Math. Appl., 27:2 (2017), 131–135
Citation in format AMSBIB
\Bibitem{Tug16}
\by A.~A.~Tuganbaev
\paper On serial rings
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 4
\pages 150--157
\mathnet{http://mi.mathnet.ru/dm1399}
\crossref{https://doi.org/10.4213/dm1399}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3699328}
\elib{https://elibrary.ru/item.asp?id=28119099}
\transl
\jour Discrete Math. Appl.
\yr 2017
\vol 27
\issue 2
\pages 131--135
\crossref{https://doi.org/10.1515/dma-2017-0016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403472300009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85018420450}
Linking options:
  • https://www.mathnet.ru/eng/dm1399
  • https://doi.org/10.4213/dm1399
  • https://www.mathnet.ru/eng/dm/v28/i4/p150
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025