Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2016, Volume 28, Issue 4, Pages 122–138
DOI: https://doi.org/10.4213/dm1397
(Mi dm1397)
 

On the number of subsets of the residue ring such that the difference of any pair of elements is not invertible

P. V. Roldugin

Moscow State Technical University of Radioengineering, Electronics and Automation
References:
Abstract: The paper is concerned with subsets $I$ of the residue group ${Z_d}$ in which the difference of any two elements is not relatively prime to $d$. The class of such subsets is denoted by $U\left( d \right)$, the class of sets from $U\left( d \right)$ of cardinality $r$ is denoted by $U\left( {d,\;r} \right)$. The present paper gives formulas for evaluation or estimation of $\left| {U\left( d \right)} \right|$ and $\left| {U\left( {d,\;r} \right)} \right|$.
Keywords: residue ring, nonunit differences, enumerative combinatorics.
Received: 17.02.2016
English version:
Discrete Mathematics and Applications, 2018, Volume 28, Issue 2, Pages 83–96
DOI: https://doi.org/10.1515/dma-2018-0009
Bibliographic databases:
Document Type: Article
UDC: 519.115
Language: Russian
Citation: P. V. Roldugin, “On the number of subsets of the residue ring such that the difference of any pair of elements is not invertible”, Diskr. Mat., 28:4 (2016), 122–138; Discrete Math. Appl., 28:2 (2018), 83–96
Citation in format AMSBIB
\Bibitem{Rol16}
\by P.~V.~Roldugin
\paper On the number of subsets of the residue ring such that the difference of any pair of elements is not invertible
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 4
\pages 122--138
\mathnet{http://mi.mathnet.ru/dm1397}
\crossref{https://doi.org/10.4213/dm1397}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3699326}
\elib{https://elibrary.ru/item.asp?id=28119097}
\transl
\jour Discrete Math. Appl.
\yr 2018
\vol 28
\issue 2
\pages 83--96
\crossref{https://doi.org/10.1515/dma-2018-0009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000429576700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85045624308}
Linking options:
  • https://www.mathnet.ru/eng/dm1397
  • https://doi.org/10.4213/dm1397
  • https://www.mathnet.ru/eng/dm/v28/i4/p122
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025