Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2016, Volume 28, Issue 4, Pages 100–121
DOI: https://doi.org/10.4213/dm1396
(Mi dm1396)
 

On groups containing the additive group of the residue ring or the vector space

B. A. Pogorelova, M. A. Pudovkinab

a Academy of Cryptography of Russian Federation
b Bauman Moscow State Technical University
References:
Abstract: Groups which are most frequently used as key addition groups in iterative block ciphers include the regular permutation representation $V_n^ + $ of the group of vector key addition, the regular permutation representation $\mathbb{Z}_{{2^n}}^ + $ of the additive group of the residue ring, and the regular permutation representation $\mathbb{Z}_{{2^n} + 1}^ \odot $ of the multiplicative group of a prime field (in the case where ${2^n} + 1$ is a prime number). In this work we consider the extension of the group ${G_n}$ generated by $V_n^ + $ and $\mathbb{Z}_{{2^n}}^ + $ by means of transformations and groups which naturally arise in cryptographic applications. Examples of such transformations and groups are the groups $\mathbb{Z}_{{2^d}}^ + \times V_{n - d}^ + $ and $V_{n - d}^ + \times \mathbb{Z}_{{2^d}}^ + $ and pseudoinversion over the field $GF({2^n})$ or over the Galois ring $GR({2^{md}}{,2^m})$.
Keywords: key addition group, additive regular group, wreath product of permutation groups, multiplicative group of the residue ring, Galois ring.
Received: 28.10.2016
English version:
Discrete Mathematics and Applications, 2018, Volume 28, Issue 4, Pages 231–247
DOI: https://doi.org/10.1515/dma-2018-0021
Bibliographic databases:
Document Type: Article
UDC: 512.541.4
Language: Russian
Citation: B. A. Pogorelov, M. A. Pudovkina, “On groups containing the additive group of the residue ring or the vector space”, Diskr. Mat., 28:4 (2016), 100–121; Discrete Math. Appl., 28:4 (2018), 231–247
Citation in format AMSBIB
\Bibitem{PogPud16}
\by B.~A.~Pogorelov, M.~A.~Pudovkina
\paper On groups containing the additive group of the residue ring or the vector space
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 4
\pages 100--121
\mathnet{http://mi.mathnet.ru/dm1396}
\crossref{https://doi.org/10.4213/dm1396}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3699325}
\elib{https://elibrary.ru/item.asp?id=28119096}
\transl
\jour Discrete Math. Appl.
\yr 2018
\vol 28
\issue 4
\pages 231--247
\crossref{https://doi.org/10.1515/dma-2018-0021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000442245400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053143943}
Linking options:
  • https://www.mathnet.ru/eng/dm1396
  • https://doi.org/10.4213/dm1396
  • https://www.mathnet.ru/eng/dm/v28/i4/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025