Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2004, Volume 16, Issue 1, Pages 9–13
DOI: https://doi.org/10.4213/dm139
(Mi dm139)
 

This article is cited in 2 scientific papers (total in 2 papers)

Some classes of random mappings of finite sets, and nonhomogeneous branching processes

B. A. Sevast'yanov
Full-text PDF (406 kB) Citations (2)
References:
Abstract: Let $X=\bigcup_{t=0}^TX_t$ be a finite set, where $X_t$, $t=1,2,\ldots,T$, are pairwise non-overlapping sets, $N_t=|X_t|$ be the cardinality of the set $X_t$, $t=0,1,\ldots,T$. Let $\mathcal F_1$ be the class of all mappings $f$ of the set $X'=X\setminus X_0$ into $X$ such that the image $y=f(x)\in X_{t-1}\cup X_t$ for any $x\in X_t$, $t=1,\ldots,T$. The cardinality of the set of all mappings of the class $\mathcal F_1$ is $\prod_{t=1}^T(N_{t-1}+N_t)^{N_t}$. With the use of non-homogeneous branching processes, we study some asymptotical properties of the uniformly distributed on $\mathcal F_1$ random mapping $f$ as $N_t\to\infty$, $t=1,2,\ldots,T$. Similar results are obtained for some other classes of random mappings $f$ of the set $X$.
This research was supported by the Russian Foundation for Basic Research, grant 02.01.00266, and the grant 1758.2003.1 of the President of Russian Federation for support of leading scientific schools.
Received: 11.11.2003
English version:
Discrete Mathematics and Applications, 2004, Volume 14, Issue 1, Pages 7–12
DOI: https://doi.org/10.1515/156939204774148785
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: B. A. Sevast'yanov, “Some classes of random mappings of finite sets, and nonhomogeneous branching processes”, Diskr. Mat., 16:1 (2004), 9–13; Discrete Math. Appl., 14:1 (2004), 7–12
Citation in format AMSBIB
\Bibitem{Sev04}
\by B.~A.~Sevast'yanov
\paper Some classes of random mappings of finite sets, and nonhomogeneous branching processes
\jour Diskr. Mat.
\yr 2004
\vol 16
\issue 1
\pages 9--13
\mathnet{http://mi.mathnet.ru/dm139}
\crossref{https://doi.org/10.4213/dm139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2069986}
\zmath{https://zbmath.org/?q=an:1054.60090}
\transl
\jour Discrete Math. Appl.
\yr 2004
\vol 14
\issue 1
\pages 7--12
\crossref{https://doi.org/10.1515/156939204774148785}
Linking options:
  • https://www.mathnet.ru/eng/dm139
  • https://doi.org/10.4213/dm139
  • https://www.mathnet.ru/eng/dm/v16/i1/p9
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024