Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2016, Volume 28, Issue 4, Pages 6–28
DOI: https://doi.org/10.4213/dm1389
(Mi dm1389)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the non-recurrent random walk in a random environment

V. I. Afanasyev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (486 kB) Citations (5)
References:
Abstract: For weakly transient random walk in a random environment that tend at $-\infty$ the limit theorem for the time of hitting a high level is proved.
Keywords: random walk in a random environment, branching process with migration in a random environment, Brownian excursion, functional limit theorems.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00318_а
Russian Academy of Sciences - Federal Agency for Scientific Organizations
This work was supported by the RFBR (grant 14-01-00318) and by the Presidium of RAS program "Mathematical problems of modern control theory".
Received: 02.02.2016
English version:
Discrete Mathematics and Applications, 2018, Volume 28, Issue 3, Pages 139–156
DOI: https://doi.org/10.1515/dma-2018-0014
Bibliographic databases:
Document Type: Article
UDC: 519.217.31
Language: Russian
Citation: V. I. Afanasyev, “On the non-recurrent random walk in a random environment”, Diskr. Mat., 28:4 (2016), 6–28; Discrete Math. Appl., 28:3 (2018), 139–156
Citation in format AMSBIB
\Bibitem{Afa16}
\by V.~I.~Afanasyev
\paper On the non-recurrent random walk in a random environment
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 4
\pages 6--28
\mathnet{http://mi.mathnet.ru/dm1389}
\crossref{https://doi.org/10.4213/dm1389}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3699318}
\elib{https://elibrary.ru/item.asp?id=28119088}
\transl
\jour Discrete Math. Appl.
\yr 2018
\vol 28
\issue 3
\pages 139--156
\crossref{https://doi.org/10.1515/dma-2018-0014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000435373700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85048865141}
Linking options:
  • https://www.mathnet.ru/eng/dm1389
  • https://doi.org/10.4213/dm1389
  • https://www.mathnet.ru/eng/dm/v28/i4/p6
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:483
    Full-text PDF :43
    References:61
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024