Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2016, Volume 28, Issue 3, Pages 126–144
DOI: https://doi.org/10.4213/dm1387
(Mi dm1387)
 

This article is cited in 2 scientific papers (total in 2 papers)

Independence numbers of random sparse hypergraphs

A. S. Semenov, D. A. Shabanov

Lomonosov Moscow State University
Full-text PDF (527 kB) Citations (2)
References:
Abstract: The paper is concerned with the asymptotic behaviour of the independence number for the binomial model of a random $k$-regular hypergraph $H(n,k,p)$ in a sparse case, when $p=c/{n-1\choose k-1}$ with positive constant $c>0$. The independence number $\alpha(H(n,k,p))$ is shown to satisfy the law of large numbers
$$ \frac{\alpha(H(n,k,p))}{n}\stackrel{P}{\to}\gamma(c)\;\; as n\to+\infty $$
with some constant $\gamma(c)>0$. We also shows that $\gamma(c)>0$ is a solution of some transcendental equation for small values of $c\leqslant (k-1)^{-1}$.
Keywords: hypergraph, independence number, sparse hypergraphs, the method of interpolation, the Karp–Sipser algorithm.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03530-a
Ministry of Education and Science of the Russian Federation MД-5650.2016.1
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 15-01-03530-a) and a grant of the President of the Russian Federation for Support of Young Doctors of the Sciences (grant no. MD-5650.2016.1).
Received: 19.06.2016
English version:
Discrete Mathematics and Applications, 2017, Volume 27, Issue 4, Pages 231–245
DOI: https://doi.org/10.1515/dma-2017-0025
Bibliographic databases:
Document Type: Article
UDC: 519.214+519.179.1+519.179.4
Language: Russian
Citation: A. S. Semenov, D. A. Shabanov, “Independence numbers of random sparse hypergraphs”, Diskr. Mat., 28:3 (2016), 126–144; Discrete Math. Appl., 27:4 (2017), 231–245
Citation in format AMSBIB
\Bibitem{SemSha16}
\by A.~S.~Semenov, D.~A.~Shabanov
\paper Independence numbers of random sparse hypergraphs
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 3
\pages 126--144
\mathnet{http://mi.mathnet.ru/dm1387}
\crossref{https://doi.org/10.4213/dm1387}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3643050}
\elib{https://elibrary.ru/item.asp?id=27349822}
\transl
\jour Discrete Math. Appl.
\yr 2017
\vol 27
\issue 4
\pages 231--245
\crossref{https://doi.org/10.1515/dma-2017-0025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411525100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85028058454}
Linking options:
  • https://www.mathnet.ru/eng/dm1387
  • https://doi.org/10.4213/dm1387
  • https://www.mathnet.ru/eng/dm/v28/i3/p126
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:545
    Full-text PDF :95
    References:77
    First page:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024