Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2016, Volume 28, Issue 3, Pages 59–96
DOI: https://doi.org/10.4213/dm1384
(Mi dm1384)
 

This article is cited in 1 scientific paper (total in 1 paper)

Distribution of the extreme values of the number of ones in Boolean analogues of the Pascal triangle

F. M. Malyshev

Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: The paper is concerned with estimating the number $\xi$ of ones in triangular arrays consisting of elements of the field $GF(2)$ which are defined by the bottom row of $s$ elements. The elements of each higher row are obtained (as in Pascal triangles) by the summation of pairs of elements from the corresponding lower row. It is shown that there exists a monotone unbounded sequence $0=k_0<k_1<k_2<\,...$ of rational numbers such that, for any $k>0$, for sufficiently large $s$ the admissible values of $\xi$ which are smaller than $ks$ or larger than $s(s+1)/3-sk/3$ are concentrated in neighbourhoods of points $k_is$ and $s(s+1)/3-sk_i/3$, $i\geqslant0$. The resulting estimates of the neighbourhoods are functions of $i$ for each $i\geqslant0$ and do not depend on $s$. The distributions of the numbers of triangles with values $\xi$ in these neighbourhoods depend only on the residues of $s$ with respect to moduli that depend on $i\geqslant0$.
Keywords: Pascal triangle, (0-1)-matrix, extreme combinatorial configuration.
Received: 17.03.2016
English version:
Discrete Mathematics and Applications, 2017, Volume 27, Issue 3, Pages 149–176
DOI: https://doi.org/10.1515/dma-2017-0019
Bibliographic databases:
Document Type: Article
UDC: 519.14
Language: Russian
Citation: F. M. Malyshev, “Distribution of the extreme values of the number of ones in Boolean analogues of the Pascal triangle”, Diskr. Mat., 28:3 (2016), 59–96; Discrete Math. Appl., 27:3 (2017), 149–176
Citation in format AMSBIB
\Bibitem{Mal16}
\by F.~M.~Malyshev
\paper Distribution of the extreme values of the number of ones in Boolean analogues of the Pascal triangle
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 3
\pages 59--96
\mathnet{http://mi.mathnet.ru/dm1384}
\crossref{https://doi.org/10.4213/dm1384}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3643047}
\elib{https://elibrary.ru/item.asp?id=27349816}
\transl
\jour Discrete Math. Appl.
\yr 2017
\vol 27
\issue 3
\pages 149--176
\crossref{https://doi.org/10.1515/dma-2017-0019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000405964800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021847290}
Linking options:
  • https://www.mathnet.ru/eng/dm1384
  • https://doi.org/10.4213/dm1384
  • https://www.mathnet.ru/eng/dm/v28/i3/p59
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :59
    References:42
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024