|
This article is cited in 4 scientific papers (total in 4 papers)
Bezout rings without non-central idempotents
A. A. Tuganbaev National Research University "Moscow Power Engineering Institute"
Abstract:
Let $A$ be a Bezout ring without non-central idempotents. If $A$ is a right or left Rickartian ring, then $A$ is an Hermitian ring. If $A$ is an exchange ring, then every rectangular matrix over $A$ is diagonalizable.
Keywords:
Bezout ring, Hermitian ring, diagonalizable ring.
Received: 15.03.2016
Citation:
A. A. Tuganbaev, “Bezout rings without non-central idempotents”, Diskr. Mat., 28:2 (2016), 133–145; Discrete Math. Appl., 26:6 (2016), 369–377
Linking options:
https://www.mathnet.ru/eng/dm1376https://doi.org/10.4213/dm1376 https://www.mathnet.ru/eng/dm/v28/i2/p133
|
|