Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2016, Volume 28, Issue 2, Pages 92–107
DOI: https://doi.org/10.4213/dm1372
(Mi dm1372)
 

Limit theorems for the number of successes in random binary sequences with random embeddings

B. I. Selivanov, V. P. Chistyakov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: The sequence of $ n $ random $ (0,1) $-variables $ X_1,\,\ldots \, , \, X_n $ is considered, with $ \theta_n $ of these variables distributed equiprobable and the others take the value 1 with probability $ p $ ($ 0 < p < 1, p \neq 1/2 $), $\theta_n $ is a random variable taking values $ 0,\,1,\,\ldots ,\,n $). On the assumption that $ n \to \infty $ and under certain conditions imposed on $ p,\theta_n $ and $ X_k,\,k = 1,\ldots, n, $ several limit theorems for the sum $ S_n = \sum_{k=1}^n X_k $. The results are of interest in connection with steganography and statistical analysis of sequences produced by random number generators.
Keywords: random binary sequence, random sum, random embeddings, steganography, convergence in distribution} \classification[Funding]{This work was supported by the RAS program «Modern problems in theoretic mathematics».
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations
This work was supported by the RAS program "Modern problems in theoretic mathematics".
Received: 07.04.2016
English version:
Discrete Mathematics and Applications, 2016, Volume 26, Issue 6, Pages 355–367
DOI: https://doi.org/10.1515/dma-2016-0030
Bibliographic databases:
Document Type: Article
UDC: 519.214+519.212.2
Language: Russian
Citation: B. I. Selivanov, V. P. Chistyakov, “Limit theorems for the number of successes in random binary sequences with random embeddings”, Diskr. Mat., 28:2 (2016), 92–107; Discrete Math. Appl., 26:6 (2016), 355–367
Citation in format AMSBIB
\Bibitem{SelChi16}
\by B.~I.~Selivanov, V.~P.~Chistyakov
\paper Limit theorems for the number of successes in random binary sequences with random embeddings
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 2
\pages 92--107
\mathnet{http://mi.mathnet.ru/dm1372}
\crossref{https://doi.org/10.4213/dm1372}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559795}
\elib{https://elibrary.ru/item.asp?id=26414206}
\transl
\jour Discrete Math. Appl.
\yr 2016
\vol 26
\issue 6
\pages 355--367
\crossref{https://doi.org/10.1515/dma-2016-0030}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000390939700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85007575201}
Linking options:
  • https://www.mathnet.ru/eng/dm1372
  • https://doi.org/10.4213/dm1372
  • https://www.mathnet.ru/eng/dm/v28/i2/p92
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024