Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2016, Volume 28, Issue 2, Pages 81–91
DOI: https://doi.org/10.4213/dm1371
(Mi dm1371)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the number of functions of $k$-valued logic which are polynomials modulo composite $k$

S. N. Selezneva

Lomonosov Moscow State University
Full-text PDF (466 kB) Citations (3)
References:
Abstract: A function of $k$-valued logic is called polynomial if it may be represented by a polynomial modulo $k$. For any composite number $k$ we propose a uniquely defined canonical form of polynomials for polynomial functions of $k$-valued logic depending on an arbitrary number of variables. This canonical form is used to find, for any composite $k$, a formula for the number of $n$-place polynomial functions of $k$-valued logic. As a corollary, for any composite $k$ we find the asymptotic behaviour of the logarithm of the number of $n$-place polynomial functions of $k$-valued logic.
Keywords: function of $k$-valued logic, polynomial, polynomial function, numeric functions, asymptotic behaviour.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00593-а
This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 16-01-00593-a).
Received: 01.02.2016
English version:
Discrete Mathematics and Applications, 2017, Volume 27, Issue 1, Pages 7–14
DOI: https://doi.org/10.1515/dma-2017-0002
Bibliographic databases:
Document Type: Article
UDC: 519.716.325
Language: Russian
Citation: S. N. Selezneva, “On the number of functions of $k$-valued logic which are polynomials modulo composite $k$”, Diskr. Mat., 28:2 (2016), 81–91; Discrete Math. Appl., 27:1 (2017), 7–14
Citation in format AMSBIB
\Bibitem{Sel16}
\by S.~N.~Selezneva
\paper On the number of functions of $k$-valued logic which are polynomials modulo composite $k$
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 2
\pages 81--91
\mathnet{http://mi.mathnet.ru/dm1371}
\crossref{https://doi.org/10.4213/dm1371}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559794}
\elib{https://elibrary.ru/item.asp?id=26414205}
\transl
\jour Discrete Math. Appl.
\yr 2017
\vol 27
\issue 1
\pages 7--14
\crossref{https://doi.org/10.1515/dma-2017-0002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403470400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017018135}
Linking options:
  • https://www.mathnet.ru/eng/dm1371
  • https://doi.org/10.4213/dm1371
  • https://www.mathnet.ru/eng/dm/v28/i2/p81
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:415
    Full-text PDF :152
    References:60
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024