Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2016, Volume 28, Issue 2, Pages 27–43
DOI: https://doi.org/10.4213/dm1366
(Mi dm1366)
 

This article is cited in 7 scientific papers (total in 7 papers)

Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method

O. V. Kamlovskii

LLC "Certification Research Center", Moscow
Full-text PDF (495 kB) Citations (7)
References:
Abstract: A general approach is proposed for obtaining estimates of the number of solutions of systems of nonlinear equations. Final estimates are established in the case when the arguments of functions in the system are the signs of linear recurrent sequences over Galois rings.
Keywords: linear recurrent sequences, system of nonlinear equations, Galois rings, spectral method, cross-correlation coefficients.
Received: 07.08.2015
English version:
Discrete Mathematics and Applications, 2017, Volume 27, Issue 4, Pages 199–211
DOI: https://doi.org/10.1515/dma-2017-0022
Bibliographic databases:
Document Type: Article
UDC: 512.547+512.552
Language: Russian
Citation: O. V. Kamlovskii, “Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method”, Diskr. Mat., 28:2 (2016), 27–43; Discrete Math. Appl., 27:4 (2017), 199–211
Citation in format AMSBIB
\Bibitem{Kam16}
\by O.~V.~Kamlovskii
\paper Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 2
\pages 27--43
\mathnet{http://mi.mathnet.ru/dm1366}
\crossref{https://doi.org/10.4213/dm1366}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559789}
\elib{https://elibrary.ru/item.asp?id=26414200}
\transl
\jour Discrete Math. Appl.
\yr 2017
\vol 27
\issue 4
\pages 199--211
\crossref{https://doi.org/10.1515/dma-2017-0022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411525100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85028036808}
Linking options:
  • https://www.mathnet.ru/eng/dm1366
  • https://doi.org/10.4213/dm1366
  • https://www.mathnet.ru/eng/dm/v28/i2/p27
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:457
    Full-text PDF :97
    References:55
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024