Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2016, Volume 28, Issue 2, Pages 12–26
DOI: https://doi.org/10.4213/dm1365
(Mi dm1365)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the gate complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates

D. V. Zakablukov

Bauman Moscow State Technical University
Full-text PDF (533 kB) Citations (3)
References:
Abstract: The paper is concerned with the problem of complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates. For a reversible circuit implementing a map $f\colon \ZZ_2^n \to \ZZ_2^n$ we define the Shannon complexity function $L(n, q)$ as a function of $n$ and the number $q$ of additional inputs in the circuit. We prove the lower estimate $L(n,q) \geqslant \frac{2^n(n-2)}{3\log_2(n+q)} - \frac{n}{3}$ for the complexity of a reversible circuit and derive the upper estimate $L(n,0) \leqslant 48n2^n(1+o(1)) \mathop / \log_2n$ if there are no additional inputs. The asymptotic upper estimate for the complexity is shown to be $L(n,q_0) \lesssim 2^n$ with $q_0 \sim n2^{n-o(n)}$ additional inputs.
Keywords: reversible circuit, circuit complexity, computations with memory.
Received: 24.04.2014
English version:
Discrete Mathematics and Applications, 2017, Volume 27, Issue 1, Pages 57–67
DOI: https://doi.org/10.1515/dma-2017-0007
Bibliographic databases:
Document Type: Article
UDC: 519.714.4
Language: Russian
Citation: D. V. Zakablukov, “On the gate complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates”, Diskr. Mat., 28:2 (2016), 12–26; Discrete Math. Appl., 27:1 (2017), 57–67
Citation in format AMSBIB
\Bibitem{Zak16}
\by D.~V.~Zakablukov
\paper On the gate complexity of reversible circuits consisting of NOT, CNOT and 2-CNOT gates
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 2
\pages 12--26
\mathnet{http://mi.mathnet.ru/dm1365}
\crossref{https://doi.org/10.4213/dm1365}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3559788}
\elib{https://elibrary.ru/item.asp?id=26414199}
\transl
\jour Discrete Math. Appl.
\yr 2017
\vol 27
\issue 1
\pages 57--67
\crossref{https://doi.org/10.1515/dma-2017-0007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403470400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016971091}
Linking options:
  • https://www.mathnet.ru/eng/dm1365
  • https://doi.org/10.4213/dm1365
  • https://www.mathnet.ru/eng/dm/v28/i2/p12
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024