Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2016, Volume 28, Issue 1, Pages 87–100
DOI: https://doi.org/10.4213/dm1359
(Mi dm1359)
 

This article is cited in 8 scientific papers (total in 8 papers)

Tests of contact closure for contact circuits

K. A. Popkov

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
Full-text PDF (478 kB) Citations (8)
References:
Abstract: The paper is concerned with the problem of synthesis of two-pole contact circuits implementing $n$-place Boolean functions and admitting short fault detection and diagnostic tests with respect to closures of contacts. It is shown that almost all $n$-place Boolean functions are implemented by irredundant two-pole contact circuits admitting single fault detection, complete fault detection and single diagnostic tests of constant length. We also prove that: \linebreak 1) any Boolean function $f(x_1,\ldots,x_n)$ may be implemented by an irredundant two-pole contact circuit containing at most one input variable distinct from the variables $x_1,\ldots,x_n$ and admitting single and complete fault detection tests of length at most $2n$; \linebreak 2) any Boolean function $f(x_1,\ldots,x_n)$ may be implemented by an irredundant two-pole contact circuit containing at most two input variables distinct from the variables $x_1,\ldots,x_n$ and admitting single diagnostic test of length at most $4n$.
Keywords: contact circuit, contact closure, fault detection test, diagnostic test.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00598
The author was supported by the Russian Foundation for Basic Research (project no. 14-01-00598) and the Program of Basic Research of the Mathematical Science Division of the Russian Academy of Sciences “Algebraic and Combinatorial Methods of Mathematical Cybernetics and Information Systems of New Generation” (project “The Problems of Optimal Synthesis of Control Systems”).
Received: 28.07.2015
English version:
Discrete Mathematics and Applications, 2016, Volume 26, Issue 5, Pages 299–308
DOI: https://doi.org/10.1515/dma-2016-0025
Bibliographic databases:
Document Type: Article
UDC: 519.718.7
Language: Russian
Citation: K. A. Popkov, “Tests of contact closure for contact circuits”, Diskr. Mat., 28:1 (2016), 87–100; Discrete Math. Appl., 26:5 (2016), 299–308
Citation in format AMSBIB
\Bibitem{Pop16}
\by K.~A.~Popkov
\paper Tests of contact closure for contact circuits
\jour Diskr. Mat.
\yr 2016
\vol 28
\issue 1
\pages 87--100
\mathnet{http://mi.mathnet.ru/dm1359}
\crossref{https://doi.org/10.4213/dm1359}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3527010}
\elib{https://elibrary.ru/item.asp?id=25707500}
\transl
\jour Discrete Math. Appl.
\yr 2016
\vol 26
\issue 5
\pages 299--308
\crossref{https://doi.org/10.1515/dma-2016-0025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000390939400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84997017300}
Linking options:
  • https://www.mathnet.ru/eng/dm1359
  • https://doi.org/10.4213/dm1359
  • https://www.mathnet.ru/eng/dm/v28/i1/p87
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:534
    Full-text PDF :253
    References:80
    First page:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024