|
On the asymptotics of the number of repetition-free Boolean functions in the basis $\{\&,\lor,\oplus,\lnot\}$
V. A. Voblyi Bauman Moscow State Technical University
Abstract:
We obtain an asymptotic formula for the number $S_n$ of repetition-free Boolean functions of $n$ variables in the basis $\{\&,\lor,\oplus,\lnot\}$ for $n\to\infty: S_n\sim cn^{-3/2}\alpha^nn!$, where $c\approx0.1998398363\;,\alpha\approx7.549773429\;.$
Keywords:
repetition-free Boolean function, enumeration, asymptotics.
Received: 31.03.2015
Citation:
V. A. Voblyi, “On the asymptotics of the number of repetition-free Boolean functions in the basis $\{\&,\lor,\oplus,\lnot\}$”, Diskr. Mat., 27:3 (2015), 158–159; Discrete Math. Appl., 27:1 (2017), 55–56
Linking options:
https://www.mathnet.ru/eng/dm1342https://doi.org/10.4213/dm1342 https://www.mathnet.ru/eng/dm/v27/i3/p158
|
Statistics & downloads: |
Abstract page: | 451 | Full-text PDF : | 93 | References: | 64 | First page: | 26 |
|