Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2015, Volume 27, Issue 3, Pages 25–43
DOI: https://doi.org/10.4213/dm1333
(Mi dm1333)
 

This article is cited in 4 scientific papers (total in 4 papers)

On some measures of complexity of finite Abelian groups

V. V. Kocherginab

a Lomonosov Moscow State University
b Lomonosov Moscow State University, Bogoliubov Institute for Theoretical Problems of Microphysics
Full-text PDF (591 kB) Citations (4)
References:
Abstract: Let a finite Abelian multiplicative group $G$ be specified by the basis $B = \{ a_1, a_2, \ldots , a_q\}$, that is, the group $G$ is decomposed into a direct product of cyclic subgroups generated by the elements of the set $B$: $G= \langle a_1 \rangle \times \langle a_2 \rangle \times \ldots \times \langle a_q \rangle$. The complexity $L(g;B)$ of an element $g$ of the group $G$ in the basis $B$ is defined as the minimum number of multiplication operations required to compute the element $g$ given the basis $B$ (it is allowed to use the results of intermediate computations many times). Let $L(G, B)= \max\limits_{g \in G} L(g; B),$ $ LM(G)= \max\limits_{B} L(G, B),$ $Lm(G)= \min\limits_{B} L(G, B),$ $M(n) = \max\limits_{G \colon |G| \le n} LM(G),$ $m(n) = \max\limits_{G \colon |G| \le n} Lm(G),$ $M_{\hbox{\small av}}(n) = \left( \sum\limits_{G \colon |G|= n}{ LM(G)}\right)/{A(n)},$ $m_{\hbox{\small av}}(n) = \left( \sum\limits_{G \colon |G|= n}{ Lm(G)}\right)/{A(n)},$ where $A(n)$ is the number of Abelian groups of order $n$. In this work the asymptotic estimates for the quantities $L(G, B)$, $M(n)$, $m(n)$, $M_{\hbox{\small av}}(n)$, and ${m_{\hbox{\small av}}}(n)$ are established.
Keywords: finite Abelian group, computational complexity, addition chains, vectorial addition chains, Bellman's problem, Knuth's problem.
Funding agency Grant number
Russian Foundation for Basic Research 14--01--00598
This work was financially supported by the Russian Foundation for Basic Research, grant № 14–01–00598.
Received: 25.05.2015
English version:
Discrete Mathematics and Applications, 2017, Volume 27, Issue 2, Pages 81–95
DOI: https://doi.org/10.1515/dma-2017-0010
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: V. V. Kochergin, “On some measures of complexity of finite Abelian groups”, Diskr. Mat., 27:3 (2015), 25–43; Discrete Math. Appl., 27:2 (2017), 81–95
Citation in format AMSBIB
\Bibitem{Koc15}
\by V.~V.~Kochergin
\paper On some measures of complexity of finite Abelian groups
\jour Diskr. Mat.
\yr 2015
\vol 27
\issue 3
\pages 25--43
\mathnet{http://mi.mathnet.ru/dm1333}
\crossref{https://doi.org/10.4213/dm1333}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468399}
\elib{https://elibrary.ru/item.asp?id=24849927}
\transl
\jour Discrete Math. Appl.
\yr 2017
\vol 27
\issue 2
\pages 81--95
\crossref{https://doi.org/10.1515/dma-2017-0010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000403472300003}
Linking options:
  • https://www.mathnet.ru/eng/dm1333
  • https://doi.org/10.4213/dm1333
  • https://www.mathnet.ru/eng/dm/v27/i3/p25
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :153
    References:41
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024