Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2015, Volume 27, Issue 2, Pages 56–72
DOI: https://doi.org/10.4213/dm1325
(Mi dm1325)
 

This article is cited in 2 scientific papers (total in 2 papers)

Existence of arbitrarily long square-free words with one possible mismatch

N. V. Kotlyarovab

a Lomonosov Moscow State University
b Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
Full-text PDF (467 kB) Citations (2)
References:
Abstract: We are concerned with problems of the existence of periodic structures in words from formal languages. We consider both squares (that is, fragments of the form $xx$, where $x$ is an arbitrary word) and squares with one mismatch (that is, fragments of the form $xy$, where a word $x$ differs from a word $y$ by exactly one letter). Given natural numbers $l_0$ and $l_1$, we study conditions for the existence of arbitrarily long words not containing squares with length larger than $l_0$ and squares with one mismatch and length larger than $l_1$. For all possible pairs $l_1\geq l_0$ a minimal alphabet cardinality is found which permits to construct such a word.

\linebreak This research was carried out with the financial support of the Russian Foundation for Basic Research (grant no. 14-01-00598) and of the Branch of Mathematics of the Russian Academy of Sciences Program “Algebraic and combinatorial methods of mathematical cybernetics and new generation information systems” (the project “Problem of optimal synthesis of control systems”).
Keywords: Thue sequence, square-free words, word combinatorics, mismatch.
Received: 17.12.2014
English version:
Discrete Mathematics and Applications, 2015, Volume 25, Issue 6, Pages 345–357
DOI: https://doi.org/10.1515/dma-2015-0033
Bibliographic databases:
Document Type: Article
UDC: 519.765
Language: Russian
Citation: N. V. Kotlyarov, “Existence of arbitrarily long square-free words with one possible mismatch”, Diskr. Mat., 27:2 (2015), 56–72; Discrete Math. Appl., 25:6 (2015), 345–357
Citation in format AMSBIB
\Bibitem{Kot15}
\by N.~V.~Kotlyarov
\paper Existence of arbitrarily long square-free words with one possible mismatch
\jour Diskr. Mat.
\yr 2015
\vol 27
\issue 2
\pages 56--72
\mathnet{http://mi.mathnet.ru/dm1325}
\crossref{https://doi.org/10.4213/dm1325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3468391}
\elib{https://elibrary.ru/item.asp?id=24073693}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 6
\pages 345--357
\crossref{https://doi.org/10.1515/dma-2015-0033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366856000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949954968}
Linking options:
  • https://www.mathnet.ru/eng/dm1325
  • https://doi.org/10.4213/dm1325
  • https://www.mathnet.ru/eng/dm/v27/i2/p56
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :157
    References:44
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024