Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2014, Volume 26, Issue 3, Pages 101–120
DOI: https://doi.org/10.4213/dm1294
(Mi dm1294)
 

Asymptotically free action of permutation groups on subsets and multisets

S. Yu. Sadov

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
References:
Abstract: Let $G$ be a permutation group acting on a finite set $\Omega$ of cardinality $n$. The number of orbits of the induced action of $G$ on the set $\Omega_m$ of all $m$-element subsets of $\Omega$ obeys the trivial estimates $|\Omega_m|/|G|\leq |\Omega_m/G|\leq |\Omega_m|$. In this paper the upper estimate is improved in terms of the minimal degree of the group $G$ or the minimal degree of its subset with small complement. In particular, using the universal estimates obtained by Bochert for the minimal degree of a group and by Babai–Pyber for the order of a group, in terms of $n$ only we demonstrate that if $G$ is a 2-transitive group other than the full symmetric or the alternating groups, $m$ and $n$ are large enough, and the ratio $m/n$ is bounded away from $0$ and $1$, then $|\Omega_m/G|\approx |\Omega_m|/|G|$. Similar results hold true for the induced action of $G$ on the set $\Omega_{(m)}$ of all $m$-element multisets with elements drawn from $\Omega$, provided that the ratio $m/(m+n)$ is uniformly bounded away from $0$ and $1$.
Keywords: permutation group, regular orbits, average size of the stabilizer, minimal degree of a group, asymptotics of the number of orbits, enumeration of affine configurations, enumeration of graphs, asymptotically free action.
Received: 11.12.2013
English version:
Discrete Mathematics and Applications, 2015, Volume 25, Issue 1, Pages 31–46
DOI: https://doi.org/10.1515/dma-2015-0004
Bibliographic databases:
Document Type: Article
UDC: 512.242.74
Language: Russian
Citation: S. Yu. Sadov, “Asymptotically free action of permutation groups on subsets and multisets”, Diskr. Mat., 26:3 (2014), 101–120; Discrete Math. Appl., 25:1 (2015), 31–46
Citation in format AMSBIB
\Bibitem{Sad14}
\by S.~Yu.~Sadov
\paper Asymptotically free action of permutation groups on subsets and multisets
\jour Diskr. Mat.
\yr 2014
\vol 26
\issue 3
\pages 101--120
\mathnet{http://mi.mathnet.ru/dm1294}
\crossref{https://doi.org/10.4213/dm1294}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3309404}
\elib{https://elibrary.ru/item.asp?id=22834151}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 1
\pages 31--46
\crossref{https://doi.org/10.1515/dma-2015-0004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366852600004}
\elib{https://elibrary.ru/item.asp?id=24009627}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84923250962}
Linking options:
  • https://www.mathnet.ru/eng/dm1294
  • https://doi.org/10.4213/dm1294
  • https://www.mathnet.ru/eng/dm/v26/i3/p101
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:306
    Full-text PDF :166
    References:35
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024