Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2014, Volume 26, Issue 1, Pages 75–84
DOI: https://doi.org/10.4213/dm1268
(Mi dm1268)
 

An estimate of the approximation accuracy in B. A. Sevastyanov's limit theorem and its application in the problem of random inclusions

V. A. Kopyttseva, V. G. Mikhailovb

a Academy of Criptography of Russia
b Steklov Mathematical Institute of RAS
References:
Abstract: An estimate of the accuracy of the Poisson approximation in B. A. Sevastyanov's theorem providing conditions for the distribution of the sum of random indicators to converge to the Poisson distribution is obtained. This result is applied to estimate the rate of convergence to the limit Poisson distribution in a theorem on the number of solutions of systems of random inclusions.
Keywords: sums of random indicators, Poisson approximation, systems of random inclusions over a finite field.
Received: 01.10.2013
English version:
Discrete Mathematics and Applications, 2015, Volume 25, Issue 3, Pages 149–156
DOI: https://doi.org/10.1515/dma-2015-0015
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: V. A. Kopyttsev, V. G. Mikhailov, “An estimate of the approximation accuracy in B. A. Sevastyanov's limit theorem and its application in the problem of random inclusions”, Diskr. Mat., 26:1 (2014), 75–84; Discrete Math. Appl., 25:3 (2015), 149–156
Citation in format AMSBIB
\Bibitem{KopMik14}
\by V.~A.~Kopyttsev, V.~G.~Mikhailov
\paper An estimate of the approximation accuracy in B.~A.~Sevastyanov's limit theorem and its application in the problem of random inclusions
\jour Diskr. Mat.
\yr 2014
\vol 26
\issue 1
\pages 75--84
\mathnet{http://mi.mathnet.ru/dm1268}
\crossref{https://doi.org/10.4213/dm1268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236303}
\elib{https://elibrary.ru/item.asp?id=21826364}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 3
\pages 149--156
\crossref{https://doi.org/10.1515/dma-2015-0015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366854000004}
\elib{https://elibrary.ru/item.asp?id=24049668}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84931067536}
Linking options:
  • https://www.mathnet.ru/eng/dm1268
  • https://doi.org/10.4213/dm1268
  • https://www.mathnet.ru/eng/dm/v26/i1/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024