Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2014, Volume 26, Issue 1, Pages 3–9
DOI: https://doi.org/10.4213/dm1263
(Mi dm1263)
 

This article is cited in 1 scientific paper (total in 1 paper)

On groups with automorphisms generating recurrent sequences of the maximal period

A. V. Akishin

Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University)
Full-text PDF (163 kB) Citations (1)
References:
Abstract: Let $G$ be a finite group and $f$ be an automorphism of the group $G$. The automorphism $f$ specifies a recurrent sequence $\{ a_i \}$ on the group $G$, $i = 0, 1, \ldots$, according to the rule $a_{i+1} = f(a_i)$. If $a_0$ is the initial element of the sequence, then its period does not exceed the number of elements in the group having the same order as the element $a_0$. Thus, it makes sense to formulate the question of whether there exist groups in which such recurrent sequence for a certain automorphism has the maximal period for any initial element. In this paper we introduce the notion of an automorphism of the maximal period and find all Abelian groups and finite groups of odd orders having automorphisms of the maximal period. Also, a number of results for finite groups of even orders are established.
Keywords: finite groups, regular automorphisms, recurrent sequences on groups.
Received: 19.09.2012
English version:
Discrete Mathematics and Applications, 2015, Volume 25, Issue 4, Pages 187–192
DOI: https://doi.org/10.1515/dma-2015-0018
Bibliographic databases:
Document Type: Article
UDC: 519.242.2+519.113.6
Language: Russian
Citation: A. V. Akishin, “On groups with automorphisms generating recurrent sequences of the maximal period”, Diskr. Mat., 26:1 (2014), 3–9; Discrete Math. Appl., 25:4 (2015), 187–192
Citation in format AMSBIB
\Bibitem{Aki14}
\by A.~V.~Akishin
\paper On groups with automorphisms generating recurrent sequences of the maximal period
\jour Diskr. Mat.
\yr 2014
\vol 26
\issue 1
\pages 3--9
\mathnet{http://mi.mathnet.ru/dm1263}
\crossref{https://doi.org/10.4213/dm1263}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3236298}
\elib{https://elibrary.ru/item.asp?id=21826358}
\transl
\jour Discrete Math. Appl.
\yr 2015
\vol 25
\issue 4
\pages 187--192
\crossref{https://doi.org/10.1515/dma-2015-0018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000366854600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84939148164}
Linking options:
  • https://www.mathnet.ru/eng/dm1263
  • https://doi.org/10.4213/dm1263
  • https://www.mathnet.ru/eng/dm/v26/i1/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:525
    Full-text PDF :214
    References:40
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024