Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2011, Volume 23, Issue 2, Pages 66–75
DOI: https://doi.org/10.4213/dm1142
(Mi dm1142)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic expansions for the distribution of the number of components in random mappings and partitions

A. N. Timashov
Full-text PDF (112 kB) Citations (2)
References:
Abstract: We consider the class of all $n^n$ single-valued mappings of an $n$-element set into itself. Assuming that all such mappings have the same probabilities equal to $n^{-n}$, we investigate the distribution of the random variable $\nu_n$ equal to the number of connected components in such random mapping. We obtain asymptotic estimates of the probability $\mathbf P\{\nu_n=M\}$ as $n$, $N\to\infty$ in such a way that the ratio $N/\ln n$ does not tend to 0 and infinity. In the case where $N=\frac12\ln n+o(\ln n)$ as $n\to\infty$, we obtain a complete asymptotic expansion of this probability.
A similar expansion is obtained for the probability $\mathbf P\{\xi_n=N\}$, where $\xi_n$ is the random variable equal to the number of cycles in a permutation randomly and equiprobably chosen from the set of all $n!$ permutations of degree $n$, and also for the probability $\mathbf P\{\theta_n=N\}$, where $\theta_n$ is the number of blocks in a random partition of a set with $n$ elements.
Received: 19.12.2008
English version:
Discrete Mathematics and Applications, 2011, Volume 21, Issue 3, Pages 291–301
DOI: https://doi.org/10.1515/DMA.2011.018
Bibliographic databases:
Document Type: Article
UDC: 519.24
Language: Russian
Citation: A. N. Timashov, “Asymptotic expansions for the distribution of the number of components in random mappings and partitions”, Diskr. Mat., 23:2 (2011), 66–75; Discrete Math. Appl., 21:3 (2011), 291–301
Citation in format AMSBIB
\Bibitem{Tim11}
\by A.~N.~Timashov
\paper Asymptotic expansions for the distribution of the number of components in random mappings and partitions
\jour Diskr. Mat.
\yr 2011
\vol 23
\issue 2
\pages 66--75
\mathnet{http://mi.mathnet.ru/dm1142}
\crossref{https://doi.org/10.4213/dm1142}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2865908}
\elib{https://elibrary.ru/item.asp?id=20730385}
\transl
\jour Discrete Math. Appl.
\yr 2011
\vol 21
\issue 3
\pages 291--301
\crossref{https://doi.org/10.1515/DMA.2011.018}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79961085874}
Linking options:
  • https://www.mathnet.ru/eng/dm1142
  • https://doi.org/10.4213/dm1142
  • https://www.mathnet.ru/eng/dm/v23/i2/p66
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:520
    Full-text PDF :211
    References:45
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024