Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2011, Volume 23, Issue 1, Pages 132–158
DOI: https://doi.org/10.4213/dm1136
(Mi dm1136)
 

This article is cited in 2 scientific papers (total in 2 papers)

On irredundant complexes of faces in the unit cube

I. P. Chukhrov
Full-text PDF (749 kB) Citations (2)
References:
Abstract: The study of properties of irredundant complexes of faces is connected with the problem of minimisation of Boolean functions in the class of disjunctive normal forms (d.n.f.). In researches by S. V. Yablonskii, Yu. I. Zhuravlev, V. V. Glagolev, Yu. L. Vasilyev, A. A. Sapozhenko, on the base of construction and investigation of properties of particular Boolean functions, estimates of the maximum length and number of irredundant d.n.f. have been obtained.
The author suggests a different approach to investigations of these objects based on constructing and estimating the cardinality of sets of irredundant complexes of faces. In this paper, with the use of the probabilistic approach, new methods of construction and estimation of characteristics of irredundant complexes of faces are suggested, which give a possibility to improve the known estimates. On the base of a method of construction of irredundant complexes of faces in a belt of the unit cube $B^n$ of width $k$, we obtain estimates of the maximum number of faces and the number of irredundant complexes for the faces of dimension $k<(1/4-\varepsilon)n$, where $\varepsilon$ is as small as wished positive constant. By the optimal choice of the parameters we obtain for the logarithm of the number of irredundant complexes of faces the lower bound of order $n2^n$ with constant $1.355\cdot2^{-5}$ for the dimension of the faces $k\approx0.0526n$.
Because of equivalence of the problem of minimisation of Boolean functions in the class of d.n.f. and the problem of construction of complexes of faces covering subsets of vertices of the unit cube, the obtained results can be used for estimation of the maximum values of the length and the number of irredundant d.n.f.
Received: 08.09.2010
English version:
Discrete Mathematics and Applications, 2011, Volume 21, Issue 2, Pages 243–274
DOI: https://doi.org/10.1515/DMA.2011.015
Bibliographic databases:
Document Type: Article
UDC: 512.95
Language: Russian
Citation: I. P. Chukhrov, “On irredundant complexes of faces in the unit cube”, Diskr. Mat., 23:1 (2011), 132–158; Discrete Math. Appl., 21:2 (2011), 243–274
Citation in format AMSBIB
\Bibitem{Chu11}
\by I.~P.~Chukhrov
\paper On irredundant complexes of faces in the unit cube
\jour Diskr. Mat.
\yr 2011
\vol 23
\issue 1
\pages 132--158
\mathnet{http://mi.mathnet.ru/dm1136}
\crossref{https://doi.org/10.4213/dm1136}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2830702}
\elib{https://elibrary.ru/item.asp?id=20730379}
\transl
\jour Discrete Math. Appl.
\yr 2011
\vol 21
\issue 2
\pages 243--274
\crossref{https://doi.org/10.1515/DMA.2011.015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959999919}
Linking options:
  • https://www.mathnet.ru/eng/dm1136
  • https://doi.org/10.4213/dm1136
  • https://www.mathnet.ru/eng/dm/v23/i1/p132
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024