Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2011, Volume 23, Issue 1, Pages 28–45
DOI: https://doi.org/10.4213/dm1128
(Mi dm1128)
 

This article is cited in 7 scientific papers (total in 7 papers)

Calculation of the characteristic polynomial of a matrix

O. N. Pereslavtseva
Full-text PDF (179 kB) Citations (7)
References:
Abstract: We consider efficient algorithms of calculation of the characteristic polynomials of matrices over commutative rings. We give estimates of complexity treated as the number of ring operations, and for the ring of integers the estimates are presented in terms of the number of multiplication operations over the machine words. We suggest a new algorithm to calculate the characteristic polynomial which has the best estimate of complexity in the ring operations. We give recommendations concerning applications of the algorithm of calculation of the characteristic polynomials depending on the size of the matrix, in particular, the algorithm suggested in this paper is recommended to be applied to integer-element matrices of size greater than 60.
Received: 27.02.2009
Revised: 29.01.2011
English version:
Discrete Mathematics and Applications, 2011, Volume 21, Issue 1, Pages 109–129
DOI: https://doi.org/10.1515/DMA.2011.008
Bibliographic databases:
Document Type: Article
UDC: 519.7
Language: Russian
Citation: O. N. Pereslavtseva, “Calculation of the characteristic polynomial of a matrix”, Diskr. Mat., 23:1 (2011), 28–45; Discrete Math. Appl., 21:1 (2011), 109–129
Citation in format AMSBIB
\Bibitem{Per11}
\by O.~N.~Pereslavtseva
\paper Calculation of the characteristic polynomial of a~matrix
\jour Diskr. Mat.
\yr 2011
\vol 23
\issue 1
\pages 28--45
\mathnet{http://mi.mathnet.ru/dm1128}
\crossref{https://doi.org/10.4213/dm1128}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2830695}
\elib{https://elibrary.ru/item.asp?id=20730370}
\transl
\jour Discrete Math. Appl.
\yr 2011
\vol 21
\issue 1
\pages 109--129
\crossref{https://doi.org/10.1515/DMA.2011.008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79953309752}
Linking options:
  • https://www.mathnet.ru/eng/dm1128
  • https://doi.org/10.4213/dm1128
  • https://www.mathnet.ru/eng/dm/v23/i1/p28
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024