Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2010, Volume 22, Issue 3, Pages 63–74
DOI: https://doi.org/10.4213/dm1107
(Mi dm1107)
 

On the number of coincidences of two homogeneous random walks with positive increments

I. A. Kravchenko
References:
Abstract: We investigate the distribution of the random variable equal to the number of coincidences of two homogeneous random walks with positive independent increments. This random variable is the length of the subsequence of common elements in two random sequences which are random subsequences of the same random sequence. For the considered random variable we obtain the asymptotic expression for the mathematical expectation and a limit theorem under the assumption that the sequential intervals between coincidences of the two random walks have a finite variance. For the particular case of random walks with increments equal to 1 and 2 we prove a finiteness of this variance and obtain the expression of the variance in terms of the parameters of the random walks.
Received: 20.02.2009
English version:
Discrete Mathematics and Applications, 2010, Volume 20, Issue 4, Pages 363–376
DOI: https://doi.org/10.1515/DMA.2010.022
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: I. A. Kravchenko, “On the number of coincidences of two homogeneous random walks with positive increments”, Diskr. Mat., 22:3 (2010), 63–74; Discrete Math. Appl., 20:4 (2010), 363–376
Citation in format AMSBIB
\Bibitem{Kra10}
\by I.~A.~Kravchenko
\paper On the number of coincidences of two homogeneous random walks with positive increments
\jour Diskr. Mat.
\yr 2010
\vol 22
\issue 3
\pages 63--74
\mathnet{http://mi.mathnet.ru/dm1107}
\crossref{https://doi.org/10.4213/dm1107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2762802}
\elib{https://elibrary.ru/item.asp?id=20730347}
\transl
\jour Discrete Math. Appl.
\yr 2010
\vol 20
\issue 4
\pages 363--376
\crossref{https://doi.org/10.1515/DMA.2010.022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958483348}
Linking options:
  • https://www.mathnet.ru/eng/dm1107
  • https://doi.org/10.4213/dm1107
  • https://www.mathnet.ru/eng/dm/v22/i3/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :174
    References:75
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024