Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2010, Volume 22, Issue 2, Pages 3–21
DOI: https://doi.org/10.4213/dm1091
(Mi dm1091)
 

This article is cited in 14 scientific papers (total in 14 papers)

Poisson-type theorems for the number of special solutions of a random linear inclusion

V. A. Kopyttsev, V. G. Mikhailov
References:
Abstract: For given sets $D$ and $B$ of vectors of linear spaces over a finite field of dimensions $n$ and $T$, respectively, and a random $T\times n$ matrix $A$ over this field, we consider the distribution of the number of vectors satisfying the system of relations $x\in D$, $Ax\in B$ (that is, the number of solutions of the random linear inclusion $Ax\in B$ belonging to the set $D$). The conditions of convergence of this distribution, as $n,T\to\infty$, to the simple and compound Poisson distributions are given. These conditions require that the distribution of the matrix $A$ converge to the uniform distribution and at least one of the sets $D$ and $B$ satisfy the condition which is called here the condition of asymptotic freedom from linear combinations. These results generalise the known limit theorems on the number of special solutions of a system of random linear equations. In particular, they give a possibility to describe the asymptotic behaviour of the number of approximate solutions of a priori solvable systems.
Received: 11.03.2010
English version:
Discrete Mathematics and Applications, 2010, Volume 20, Issue 2, Pages 191–211
DOI: https://doi.org/10.1515/DMA.2010.011
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: V. A. Kopyttsev, V. G. Mikhailov, “Poisson-type theorems for the number of special solutions of a random linear inclusion”, Diskr. Mat., 22:2 (2010), 3–21; Discrete Math. Appl., 20:2 (2010), 191–211
Citation in format AMSBIB
\Bibitem{KopMik10}
\by V.~A.~Kopyttsev, V.~G.~Mikhailov
\paper Poisson-type theorems for the number of special solutions of a~random linear inclusion
\jour Diskr. Mat.
\yr 2010
\vol 22
\issue 2
\pages 3--21
\mathnet{http://mi.mathnet.ru/dm1091}
\crossref{https://doi.org/10.4213/dm1091}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2730124}
\elib{https://elibrary.ru/item.asp?id=20730331}
\transl
\jour Discrete Math. Appl.
\yr 2010
\vol 20
\issue 2
\pages 191--211
\crossref{https://doi.org/10.1515/DMA.2010.011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953018262}
Linking options:
  • https://www.mathnet.ru/eng/dm1091
  • https://doi.org/10.4213/dm1091
  • https://www.mathnet.ru/eng/dm/v22/i2/p3
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:641
    Full-text PDF :221
    References:60
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024