Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2010, Volume 22, Issue 1, Pages 126–149
DOI: https://doi.org/10.4213/dm1089
(Mi dm1089)
 

This article is cited in 16 scientific papers (total in 16 papers)

A limit theorem for the logarithm of the order of a random $A$-permutation

A. L. Yakymiv
References:
Abstract: In this article, a random permutation $\tau_n$ is considered which is uniformly distributed on the set of all permutations of degree $n$ whose cycle lengths lie in a fixed set $A$ (the so-called $A$-permutations). It is assumed that the set $A$ has an asymptotic density $\sigma>0$, and $|k\colon k\leq n,\ k\in A,\ m-k\in A|/n\to\sigma^2$ as $n\to\infty$ uniformly in $m\in[n,Cn]$ for an arbitrary constant $C>1$. The minimum degree of a permutation such that it becomes equal to the identity permutation is called the order of permutation. Let $Z_n$ be the order of a random permutation $\tau_n$. In this article, it is shown that the random variable $\ln Z_n$ is asymptotically normal with mean $l(n)=\sum_{k\in A(n)}\ln(k)/k$ and variance $\sigma\ln^3(n)/3$, where $A(n)=\{k\colon k\in A,\ k\leq n\}$. This result generalises the well-known theorem of P. Erdős and P. Turán where the uniform distribution on the whole symmetric group of permutations $S_n$ is considered, i.e., where $A$ is equal to the set of positive integers $\mathbb N$.
Received: 11.10.2008
English version:
Discrete Mathematics and Applications, 2010, Volume 20, Issue 3, Pages 247–275
DOI: https://doi.org/10.1515/DMA.2010.015
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. L. Yakymiv, “A limit theorem for the logarithm of the order of a random $A$-permutation”, Diskr. Mat., 22:1 (2010), 126–149; Discrete Math. Appl., 20:3 (2010), 247–275
Citation in format AMSBIB
\Bibitem{Yak10}
\by A.~L.~Yakymiv
\paper A limit theorem for the logarithm of the order of a~random $A$-permutation
\jour Diskr. Mat.
\yr 2010
\vol 22
\issue 1
\pages 126--149
\mathnet{http://mi.mathnet.ru/dm1089}
\crossref{https://doi.org/10.4213/dm1089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2676236}
\zmath{https://zbmath.org/?q=an:05773259}
\elib{https://elibrary.ru/item.asp?id=20730329}
\transl
\jour Discrete Math. Appl.
\yr 2010
\vol 20
\issue 3
\pages 247--275
\crossref{https://doi.org/10.1515/DMA.2010.015}
\elib{https://elibrary.ru/item.asp?id=22058818}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954729843}
Linking options:
  • https://www.mathnet.ru/eng/dm1089
  • https://doi.org/10.4213/dm1089
  • https://www.mathnet.ru/eng/dm/v22/i1/p126
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024