|
This article is cited in 1 scientific paper (total in 1 paper)
On design of circuits of logarithmic depth for inversion in finite fields
S. B. Gashkov, I. S. Sergeev
Abstract:
We suggest a method of realisation of inversion over the standard bases of finite fields $GF(p^n)$ by means of circuits over $GF(p)$ of complexity $O(\varepsilon^{-1}n^{w+\varepsilon})$ and depth $O(\varepsilon^{-1}\log n)$, where $\varepsilon>0$, and $w<1.667$ is the exponent of multiplication of $\sqrt n\times\sqrt n$ and $\sqrt n\times n$ matrices. Inversion over Gaussian normal bases is realised by a circuit of complexity $O(\varepsilon^{-b}n^{1+c\varepsilon|\log\varepsilon|})$ and depth $O(\varepsilon^{-1}\log n)$, where $b,c$ are constants.
Received: 29.01.2007
Citation:
S. B. Gashkov, I. S. Sergeev, “On design of circuits of logarithmic depth for inversion in finite fields”, Diskr. Mat., 20:4 (2008), 8–28; Discrete Math. Appl., 18:5 (2008), 483–504
Linking options:
https://www.mathnet.ru/eng/dm1023https://doi.org/10.4213/dm1023 https://www.mathnet.ru/eng/dm/v20/i4/p8
|
Statistics & downloads: |
Abstract page: | 664 | Full-text PDF : | 270 | References: | 56 | First page: | 31 |
|