Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2008, Volume 20, Issue 3, Pages 51–72
DOI: https://doi.org/10.4213/dm1013
(Mi dm1013)
 

This article is cited in 1 scientific paper (total in 2 paper)

The fundamental difference between depth and delay

V. M. Khrapchenko
Full-text PDF (187 kB) Citations (2)
References:
Abstract: Earlier, it was proved that even for a minimal circuit the delay $T$ could be much less than the depth $D$. Namely, an infinite sequence of minimal circuits was constructed such that $T<\log_2D+6$ and $D\to\infty$. This result would be more interesting if the inequality were true for all equivalent minimal circuits. In this paper, we present an infinite sequence of Boolean functions $F_k$, $k=1,2,\dots$, such that any minimal circuit for an arbitrary function $F_k$ has the depth and the delay obeying the inequality $T<\log_2D+14$.
This research was supported by the Program of Basic Research of Department of Applied Mathematics of Russian Academy of Sciences “Algebraic and Combinatorial Methods of Mathematical Cybernetics”, project “Design and Complexity of Control Systems”.
Received: 02.07.2006
English version:
Discrete Mathematics and Applications, 2008, Volume 18, Issue 4, Pages 391–412
DOI: https://doi.org/10.1515/DMA.2008.029
Bibliographic databases:
UDC: 519.95
Language: Russian
Citation: V. M. Khrapchenko, “The fundamental difference between depth and delay”, Diskr. Mat., 20:3 (2008), 51–72; Discrete Math. Appl., 18:4 (2008), 391–412
Citation in format AMSBIB
\Bibitem{Khr08}
\by V.~M.~Khrapchenko
\paper The fundamental difference between depth and delay
\jour Diskr. Mat.
\yr 2008
\vol 20
\issue 3
\pages 51--72
\mathnet{http://mi.mathnet.ru/dm1013}
\crossref{https://doi.org/10.4213/dm1013}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2467454}
\zmath{https://zbmath.org/?q=an:1174.94035}
\elib{https://elibrary.ru/item.asp?id=20730253}
\transl
\jour Discrete Math. Appl.
\yr 2008
\vol 18
\issue 4
\pages 391--412
\crossref{https://doi.org/10.1515/DMA.2008.029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-53349172329}
Linking options:
  • https://www.mathnet.ru/eng/dm1013
  • https://doi.org/10.4213/dm1013
  • https://www.mathnet.ru/eng/dm/v20/i3/p51
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:498
    Full-text PDF :213
    References:58
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024