Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2018, Issue 10, Pages 41–49
DOI: https://doi.org/10.31029/demr.10.4
(Mi demr63)
 

Fast algorithm for finding approximate solutions to the Cauchy problem for ODE

G. G. Akniev, R. M. Gadzhimirzaev

Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
References:
Abstract: The present article considers the quick algorithm for finding an approximate solution for the Cauchy problem for ODE by calculating the coefficients of expansion of this solution in terms of the system $\{\varphi_{1,n}(x)\}_{n=0}^{\infty}$, where $\varphi_{1,0}(x)=1$, $\varphi_{1,1}(x)=x$, $\varphi_{1,n+1}(x)=\frac{\sqrt{2}}{\pi n}\sin(\pi nx),$ $n=1,2,\ldots$. This system is orthonormal with respect to the Sobolev scalar product $\langle f, g\rangle=f(0)g(0)+\int_0^1f'(x)g'(x)dx$ and generated by cosines $\varphi_0(x)=1$, $ \{\varphi_n(x)=\sqrt{2}\cos(\pi nx)\}_{n=1}^\infty$. The calculation of these coefficients is performed by an iterative process based on the fast Fourier transform.
Keywords: ordinary differential equation, Cauchy problem, inner product of Sobolev type, Sobolev orthonormal function, fast Fourier transform, discrete cosine transform.
Received: 14.09.2018
Revised: 17.10.2018
Accepted: 18.10.2018
Document Type: Article
UDC: 519.688
Language: Russian
Citation: G. G. Akniev, R. M. Gadzhimirzaev, “Fast algorithm for finding approximate solutions to the Cauchy problem for ODE”, Daghestan Electronic Mathematical Reports, 2018, no. 10, 41–49
Citation in format AMSBIB
\Bibitem{AknGad18}
\by G.~G.~Akniev, R.~M.~Gadzhimirzaev
\paper Fast algorithm for finding approximate solutions to the Cauchy problem for ODE
\jour Daghestan Electronic Mathematical Reports
\yr 2018
\issue 10
\pages 41--49
\mathnet{http://mi.mathnet.ru/demr63}
\crossref{https://doi.org/10.31029/demr.10.4}
Linking options:
  • https://www.mathnet.ru/eng/demr63
  • https://www.mathnet.ru/eng/demr/y2018/i10/p41
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024