Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2018, Issue 10, Pages 23–40
DOI: https://doi.org/10.31029/demr.10.3
(Mi demr62)
 

This article is cited in 1 scientific paper (total in 1 paper)

Sobolev orthogonal polynomials generated by modified Laguerre polynomials and the Cauchy problem for ODE systems

I. I. Sharapudinovab, T. I. Sharapudinovab

a Vladikavkaz Scientific Centre of the Russian Academy of Sciences
b Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
Full-text PDF (507 kB) Citations (1)
References:
Abstract: We consider the problem of representing a solution of the Cauchy problem for a system of ordinary differential equations (in general, nonlinear) in the form of a Fourier series in polynomials $ l_{r, k} (x; b) $ $(k = 0,1,\ldots) $, orthonormal by Sobolev with respect to the scalar product $<f,g>=\sum_{\nu=0}^{r-1} f^{(\nu)} (0) g ^ {(\nu)} (0) + \int_ {0} ^ \infty f ^ {(r)} (t) g ^ {(r)} (t) e ^ {-bt} dt $ with $ b> 0 $, generated by the modified Laguerre polynomials $ l_k (x; b) = \sqrt {b} L_k (bx) $ by means of the equalities $ l_ {r, k} (x; b) = \frac {x ^ k} {k!} \, (k = 0,1 , \ldots, r-1) $,   $ l_ {r, r + k} (x; b) = \frac {1} {(r-1)!} \int_ {0} ^ x (xt) ^ {r-1} {l} _ {k} (t; b) dt \, (k = 0,1, \ldots) $. In the infinite-dimensional Hilbert space of $ l_2 ^ m $ $ m $ -dimensional sequences $ C = (c_0, c_1, \ldots) $ for which the norm $ \| C \| = \left (\sum \nolimits_ {j = 0} ^ \infty \sum \nolimits_ {l = 1} ^ {m} (c_j ^ l) ^ 2 \right) ^ \frac12 $, the contracting nonlinear operator $ A: l_2 ^ m \to l_2 ^ m $ is constructed, the fixed point \linebreak $ \hat C = (\hat c_0, \hat c_1, \ldots) $ coincides with the sequence of unknown coefficients of the expansion of the solution of the Cauchy problem in question Fourier series in the system $ l_ {1, k} (x; b) $ $ (k = 0,1, \ldots) $. The corresponding finite-dimensional analogue $ A_N: \mathbb {R} ^ N_m \to \mathbb {R} ^ N_m $ of the operator $ A $ is also constructed, which acts in the finite-dimensional space $ \mathbb {R} ^ N_m $ of matrices $ C $ of dimension $ m \times N $, in which the norm $ \| C \| _N ^ m = \left (\sum \nolimits_ {j = 0} ^ {N-1} \sum \nolimits_ {l = 1} ^ {m} (c_j ^ l) ^ 2 \right ) ^ \frac12 $. The fixed point $ \bar C = (\bar c_0, \bar c_1, \ldots, \bar c_ {N-1}) $ of the operator $ A_N $ is the estimate (approximate value) of the desired point $ \hat C_N = (\hat c_0, \hat c_1, \ldots, \hat c_ {N-1}) $. An estimate of the error $ \| \hat C_N- \bar C_N \| _N ^ m $ is established.
Keywords: Polynomials orthogonal on Sobolev, generated Laguerre\linebreak polynomials, modified Laguerre polynomials, Cauchy problem for ODE systems.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00477 мол_а
Received: 21.11.2018
Revised: 27.12.2018
Accepted: 28.12.2018
Document Type: Article
UDC: 517.521
Language: Russian
Citation: I. I. Sharapudinov, T. I. Sharapudinov, “Sobolev orthogonal polynomials generated by modified Laguerre polynomials and the Cauchy problem for ODE systems”, Daghestan Electronic Mathematical Reports, 2018, no. 10, 23–40
Citation in format AMSBIB
\Bibitem{ShaSha18}
\by I.~I.~Sharapudinov, T.~I.~Sharapudinov
\paper Sobolev orthogonal polynomials generated by modified Laguerre polynomials and the Cauchy problem for ODE systems
\jour Daghestan Electronic Mathematical Reports
\yr 2018
\issue 10
\pages 23--40
\mathnet{http://mi.mathnet.ru/demr62}
\crossref{https://doi.org/10.31029/demr.10.3}
Linking options:
  • https://www.mathnet.ru/eng/demr62
  • https://www.mathnet.ru/eng/demr/y2018/i10/p23
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024