Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2018, Issue 10, Pages 13–22
DOI: https://doi.org/10.31029/demr.10.2
(Mi demr61)
 

Co-convex interpolation by rational spline functions over a uniform grid of nodes

A.-R. K. Ramazanovab, V. G. Magomedovaa

a Daghestan State University, Makhachkala
b Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
References:
Abstract: To solve an interpolation problem with the conditions of preserving the convexity and co-convexity of discrete functions $f(x)$ defined on uniform grids of nodes $\Delta: a=x_0<x_1<\dots<x_N=b$ $(N\geqslant 3)$ rational spline-functions $R_{N,1}(x)$ are applied. Here $R_{N,1}(x)=R_{N,1} (x, f, \Delta, g(t))= (R_i(x)(x-x_{i-1})+R_{i-1}(x)(x_i-x))/(x_i-x_{i-1})$ with $x\in [x_{i-1},x_i]$ $(i=1,2,\dots,N)$, $R_i(x)=\alpha_i+\beta_i(x-x_i)+\gamma_i/(x-g_i(t))$ $(i=1,2,\dots,N-1)$ and $R_i(x_j)=f(x_j)$ $(j=i-1,i,i+1)$, the parameter $t$ locate a position of the pole $g_i(t)$ with respect to the points $x_{i-1}$ and $x_i$. We take $R_0(x)\equiv R_1(x)$, $R_N(x)\equiv R_{N-1}(x)$.
For such splines we obtain co-convex preserving conditions $0,5<q_i<2$ or $-3,20...<q_i<-0,31...$ with $q_i=f(x_{i-2}, x_{i-1}, x_i)/f(x_{i-1},x_i, x_{i+1})$ for all corresponding intervals $(x_{i-1},x_i)$, hence for the segment $[a,b]$.
Keywords: interpolation spline, rational spline, co-convex interpolation, shape preserving interpolation.
Received: 08.11.2018
Revised: 17.12.2018
Accepted: 18.12.2018
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A.-R. K. Ramazanov, V. G. Magomedova, “Co-convex interpolation by rational spline functions over a uniform grid of nodes”, Daghestan Electronic Mathematical Reports, 2018, no. 10, 13–22
Citation in format AMSBIB
\Bibitem{RamMag18}
\by A.-R.~K.~Ramazanov, V.~G.~Magomedova
\paper Co-convex interpolation by rational spline functions over a uniform grid of nodes
\jour Daghestan Electronic Mathematical Reports
\yr 2018
\issue 10
\pages 13--22
\mathnet{http://mi.mathnet.ru/demr61}
\crossref{https://doi.org/10.31029/demr.10.2}
Linking options:
  • https://www.mathnet.ru/eng/demr61
  • https://www.mathnet.ru/eng/demr/y2018/i10/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024