Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2018, Issue 9, Pages 33–51
DOI: https://doi.org/10.31029/demr.9.5
(Mi demr55)
 

An approximate solution of the Cauchy problem for an ODE system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$

I. I. Sharapudinovab

a Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences
References:
Abstract: We consider a system of functions $\xi_0(x)=1,\, \{\xi_n(x)=\sqrt{2}\cos(\pi nx)\}_{n=1}^\infty$ and the system
$$ \xi_{1,0}(x)=1,\, \xi_{1,1}(x)=x,\, \xi_{1,n+1}(x)=\int_0^x \xi_{n}(t)dt=\frac{\sqrt{2}}{\pi n}\sin(\pi nx),\, n=1,2,\ldots, $$
generated by it, which is Sobolev orthonormal with respect to a scalar product of the form $<f,g>=f'(0)g'(0)+\int_{0}^{1}f'(t)g'(t)dt$. It is shown that the Fourier series and sums with respect to the system $\{\xi_{1,n}(x)\}_{n=0}^\infty$ are a convenient and very effective tool for the approximate solution of the Cauchy problem for systems of nonlinear ordinary differential equations (ODEs).
Keywords: Cauchy problem, ODE, Fourier series, Fourier sums, approximate solution.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00486a
Received: 07.06.2018
Revised: 25.07.2018
Accepted: 26.07.2018
Document Type: Article
UDC: 517.538
Language: Russian
Citation: I. I. Sharapudinov, “An approximate solution of the Cauchy problem for an ODE system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$”, Daghestan Electronic Mathematical Reports, 2018, no. 9, 33–51
Citation in format AMSBIB
\Bibitem{Sha18}
\by I.~I.~Sharapudinov
\paper An approximate solution of the Cauchy problem for an ODE system by means of system $1,\, x,\, \{\frac{\sqrt{2}}{\pi n}\sin(\pi nx)\}_{n=1}^\infty$
\jour Daghestan Electronic Mathematical Reports
\yr 2018
\issue 9
\pages 33--51
\mathnet{http://mi.mathnet.ru/demr55}
\crossref{https://doi.org/10.31029/demr.9.5}
Linking options:
  • https://www.mathnet.ru/eng/demr55
  • https://www.mathnet.ru/eng/demr/y2018/i9/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :22
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024