Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2017, Issue 8, Pages 27–47
DOI: https://doi.org/10.31029/demr.8.4
(Mi demr46)
 

This article is cited in 1 scientific paper (total in 1 paper)

Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent

I. I. Sharapudinovab, T. N. Shakh-Emirova

a Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
b Daghestan State Pedagogical University
Full-text PDF (498 kB) Citations (1)
References:
Abstract: The problem of basis property of the Jacobi polynomials system $P_n^{\alpha,\beta}(x)$ in the weighted Lebesgue space $L^{p(x)}_\mu([-1,1])$ with variable exponent $p(x)$ and $\mu(x) = (1-x)^\alpha(1+x)^\beta$ is considered. It is shown that if $\alpha,\beta>-1/2$ and $p(x)$ satisfies on $[-1,1]$ some natural conditions then the orthonormal Jacobi polynomials system $p_n^{\alpha,\beta}(x)=(h_n^{\alpha,\beta})^{-\frac12}P_n^{\alpha,\beta}(x)$ $(n=0,1,\ldots)$ is a basis of $L^{p(x)}_\mu([-1,1])$ as $4\frac{\alpha+1}{2\alpha+3}<p(1)<4\frac{\alpha+1}{2\alpha+1}$, $4\frac{\beta+1}{2\beta+3}<p(-1)<4\frac{\beta+1}{2\beta+1}$.
Keywords: basis property of the Jacobi polynomials, Fourier-Jacobi sums, convergence in the weighted Lebesgue space with variable exponent, Dini-Lipshits condition.
Received: 01.11.2017
Revised: 23.11.2017
Accepted: 28.11.2017
Document Type: Article
UDC: 517.538
Language: Russian
Citation: I. I. Sharapudinov, T. N. Shakh-Emirov, “Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent”, Daghestan Electronic Mathematical Reports, 2017, no. 8, 27–47
Citation in format AMSBIB
\Bibitem{ShaSha17}
\by I.~I.~Sharapudinov, T.~N.~Shakh-Emirov
\paper Convergence of Fourier series in Jacobi polynomials in weighted Lebesgue space with variable exponent
\jour Daghestan Electronic Mathematical Reports
\yr 2017
\issue 8
\pages 27--47
\mathnet{http://mi.mathnet.ru/demr46}
\crossref{https://doi.org/10.31029/demr.8.4}
Linking options:
  • https://www.mathnet.ru/eng/demr46
  • https://www.mathnet.ru/eng/demr/y2017/i8/p27
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024