Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2017, Issue 8, Pages 21–26
DOI: https://doi.org/10.31029/demr.8.3
(Mi demr45)
 

Approximation of piecewise linear functions by discrete Fourier sums

G. G. Akniev

Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
References:
Abstract: Let $N$ be a natural number greater than $1$. We select $N$ uniformly distributed points $t_k = 2\pi k / N$ $(0 \leq k \leq N - 1)$ on $[0,2\pi]$. Denote by $L_{n,N}(f)=L_{n,N}(f,x)$ $(1\leq n\leq N/2)$ the trigonometric polynomial of order $n$ possessing the least quadratic deviation from $f$ with respect to the system $\{t_k\}_{k=0}^{N-1}$. In the present article the problem of function approximation by the polynomials $L_{n,N}(f,x)$ is considered. Special attention is paid to approximation of $2\pi$-periodic functions $f_1$ and $f_2$ by the polynomials $L_{n,N}(f,x)$, where $f_1(x)=|x|$ and $f_2(x)=\mathrm{sign}\, x$ for $x \in [-\pi,\pi]$. For the first function $f_1$ we show that instead of the estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c\ln n/n$ which follows from well-known Lebesgue inequality for the polynomials $L_{n,N}(f,x)$ we found an exact order estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c/n$ ($x \in \mathbb{R}$) which is uniform with respect to $1 \leq n \leq N/2$. Moreover, we found a local estimate $\left|f_{1}(x)-L_{n,N}(f_{1},x)\right| \leq c(\varepsilon)/n^2$ ($\left|x - \pi k\right| \geq \varepsilon$) which is also uniform with respect to $1 \leq n \leq N/2$. For the second function $f_2$ we found only a local estimate $\left|f_{2}(x)-L_{n,N}(f_{2},x)\right| \leq c(\varepsilon)/n$ ($\left|x - \pi k\right| \geq \varepsilon$) which is uniform with respect to $1 \leq n \leq N/2$. The proofs of these estimations based on comparing of approximating properties of discrete and continuous finite Fourier series.
Keywords: function approximation, trigonometric polynomials, Fourier series.
Received: 19.10.2017
Revised: 25.10.2017
Accepted: 27.10.2017
Document Type: Article
UDC: 517.521.2
Language: Russian
Citation: G. G. Akniev, “Approximation of piecewise linear functions by discrete Fourier sums”, Daghestan Electronic Mathematical Reports, 2017, no. 8, 21–26
Citation in format AMSBIB
\Bibitem{Akn17}
\by G.~G.~Akniev
\paper Approximation of piecewise linear functions by discrete Fourier sums
\jour Daghestan Electronic Mathematical Reports
\yr 2017
\issue 8
\pages 21--26
\mathnet{http://mi.mathnet.ru/demr45}
\crossref{https://doi.org/10.31029/demr.8.3}
Linking options:
  • https://www.mathnet.ru/eng/demr45
  • https://www.mathnet.ru/eng/demr/y2017/i8/p21
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024