Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2014, Issue 1, Pages 1–55
DOI: https://doi.org/10.31029/demr.1.1
(Mi demr4)
 

This article is cited in 1 scientific paper (total in 1 paper)

Polynomials, orthogonal on grids from unit circle and number axis

I. I. Sharapudinovab

a Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences
Full-text PDF (707 kB) Citations (1)
References:
Abstract: In current paper we investigate the asymptotic properties of polynomials, orthogonal on arbitrary (not necessarily uniform) grids from an unit circle or segment $[-1,1]$. When the grid of nodes $\Omega_N^T=\left\{e^{i\theta_0},e^{i\theta_1},\ldots,e^{i\theta_{N-1}}\right\}$ belongs to the unit circle $|w|=1$ we consider polynomials $\varphi_{0,N}(w),\varphi_{1,N}(w),\ldots,$ $\varphi_{N-1,N}(w)$, orthogonal in the following sense:
$$ \frac1{2\pi}\int\limits_{-\pi}^\pi \varphi_{n,N}(e^{i\theta})\overline{\varphi_{m,N}(e^{i\theta})}\,d\sigma_N(\theta)= $$

$$ \frac1{2\pi}\sum\limits^{N-1}_{j=0} \varphi_{n,N}(e^{i\theta_j})\overline{\varphi_{m,N}(e^{i\theta_j})} \Delta\sigma_N(\theta_j)=\delta_{nm}, $$
where $\Delta\sigma_N(\theta_j)=\sigma_N(\theta_{j+1})-\sigma_N(\theta_j), j=0,\ldots,N-1$. In case, when $\Delta\sigma_N(\theta_j)=h(\theta_j)\Delta\theta_j$, the asymptotic formula for $\varphi_{n,N}(w)$ is established, which in turn, used for investigation of asymptotic properties of polynomials which are orthogonal on grids from $[-1,1]$.
Keywords: unit circle, number axis, polynomials orthogonal on grids, asymptotic formulas.
Received: 25.10.2013
Revised: 15.04.2014
Accepted: 17.04.2014
Bibliographic databases:
Document Type: Article
UDC: 517.538
Language: Russian
Citation: I. I. Sharapudinov, “Polynomials, orthogonal on grids from unit circle and number axis”, Daghestan Electronic Mathematical Reports, 2014, no. 1, 1–55
Citation in format AMSBIB
\Bibitem{Sha14}
\by I.~I.~Sharapudinov
\paper Polynomials, orthogonal on grids from unit circle and number axis
\jour Daghestan Electronic Mathematical Reports
\yr 2014
\issue 1
\pages 1--55
\mathnet{http://mi.mathnet.ru/demr4}
\crossref{https://doi.org/10.31029/demr.1.1}
\elib{https://elibrary.ru/item.asp?id=27311191}
Linking options:
  • https://www.mathnet.ru/eng/demr4
  • https://www.mathnet.ru/eng/demr/y2014/i1/p1
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :155
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024