Abstract:
In current paper we investigate the asymptotic properties of polynomials, orthogonal on arbitrary (not necessarily uniform) grids from an unit circle or segment [−1,1]. When the grid of nodes ΩTN={eiθ0,eiθ1,…,eiθN−1} belongs to the unit circle |w|=1 we consider polynomials φ0,N(w),φ1,N(w),…,φN−1,N(w), orthogonal in the following sense:
12ππ∫−πφn,N(eiθ)¯φm,N(eiθ)dσN(θ)=
12πN−1∑j=0φn,N(eiθj)¯φm,N(eiθj)ΔσN(θj)=δnm,
where ΔσN(θj)=σN(θj+1)−σN(θj),j=0,…,N−1. In case, when ΔσN(θj)=h(θj)Δθj, the asymptotic formula for φn,N(w) is established, which in turn, used for investigation of asymptotic properties of polynomials which are orthogonal on grids from [−1,1].
Keywords:
unit circle, number axis, polynomials orthogonal on grids, asymptotic formulas.
Citation:
I. I. Sharapudinov, “Polynomials, orthogonal on grids from unit circle and number axis”, Daghestan Electronic Mathematical Reports, 2014, no. 1, 1–55
\Bibitem{Sha14}
\by I.~I.~Sharapudinov
\paper Polynomials, orthogonal on grids from unit circle and number axis
\jour Daghestan Electronic Mathematical Reports
\yr 2014
\issue 1
\pages 1--55
\mathnet{http://mi.mathnet.ru/demr4}
\crossref{https://doi.org/10.31029/demr.1.1}
\elib{https://elibrary.ru/item.asp?id=27311191}
Linking options:
https://www.mathnet.ru/eng/demr4
https://www.mathnet.ru/eng/demr/y2014/i1/p1
This publication is cited in the following 1 articles: