Abstract:
In current paper we investigate the asymptotic properties of polynomials, orthogonal on arbitrary (not necessarily uniform) grids from an unit circle or segment $[-1,1]$. When the grid of nodes $\Omega_N^T=\left\{e^{i\theta_0},e^{i\theta_1},\ldots,e^{i\theta_{N-1}}\right\}$ belongs to the unit circle $|w|=1$ we consider polynomials $\varphi_{0,N}(w),\varphi_{1,N}(w),\ldots,$$\varphi_{N-1,N}(w)$, orthogonal in the following sense:
$$
\frac1{2\pi}\int\limits_{-\pi}^\pi
\varphi_{n,N}(e^{i\theta})\overline{\varphi_{m,N}(e^{i\theta})}\,d\sigma_N(\theta)=
$$
$$
\frac1{2\pi}\sum\limits^{N-1}_{j=0}
\varphi_{n,N}(e^{i\theta_j})\overline{\varphi_{m,N}(e^{i\theta_j})}
\Delta\sigma_N(\theta_j)=\delta_{nm},
$$
where $\Delta\sigma_N(\theta_j)=\sigma_N(\theta_{j+1})-\sigma_N(\theta_j),
j=0,\ldots,N-1$. In case, when $\Delta\sigma_N(\theta_j)=h(\theta_j)\Delta\theta_j$, the asymptotic formula for $\varphi_{n,N}(w)$ is established, which in turn, used for investigation of asymptotic properties of polynomials which are orthogonal on grids from $[-1,1]$.
Keywords:
unit circle, number axis, polynomials orthogonal on grids, asymptotic formulas.
Citation:
I. I. Sharapudinov, “Polynomials, orthogonal on grids from unit circle and number axis”, Daghestan Electronic Mathematical Reports, 2014, no. 1, 1–55
\Bibitem{Sha14}
\by I.~I.~Sharapudinov
\paper Polynomials, orthogonal on grids from unit circle and number axis
\jour Daghestan Electronic Mathematical Reports
\yr 2014
\issue 1
\pages 1--55
\mathnet{http://mi.mathnet.ru/demr4}
\crossref{https://doi.org/10.31029/demr.1.1}
\elib{https://elibrary.ru/item.asp?id=27311191}
Linking options:
https://www.mathnet.ru/eng/demr4
https://www.mathnet.ru/eng/demr/y2014/i1/p1
This publication is cited in the following 1 articles:
M. S. Sultanakhmedov, “Approximation of Functions by Discrete Fourier Sums in Polynomials Orthogonal on a Nonuniform Grid with Jacobi Weight”, Math. Notes, 110:3 (2021), 418–431