Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2017, Issue 7, Pages 61–65
DOI: https://doi.org/10.31029/demr.7.7
(Mi demr38)
 

This article is cited in 3 scientific papers (total in 3 papers)

Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums

R. M. Gadzhimirzaev

Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
Full-text PDF (324 kB) Citations (3)
References:
Abstract: The present paper is devoted to the study of approximation properties of partial sums of the Fourier series in the modified Meixner polynomials $M_{n,N}^\alpha(x)=M_n^\alpha(Nx)$ $(n=0, 1, \dots)$ which for $\alpha>-1$ constitute an orthogonal system on the grid $\Omega_{\delta}=\{0, \delta, 2\delta, \ldots\}$, where $\delta=\frac{1}{N}$, $N>0$ with weight $w(x)=e^{-x}\frac{\Gamma(Nx+\alpha+1)}{\Gamma(Nx+1)}$. The main attention is paid to obtaining an upper estimate for the Lebesgue function of these partial sums.
Keywords: Meixner polynomials, Fourier series, Lebesgue function.
Received: 27.03.2017
Revised: 06.04.2017
Accepted: 10.04.2017
Document Type: Article
UDC: 517.521
Language: Russian
Citation: R. M. Gadzhimirzaev, “Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums”, Daghestan Electronic Mathematical Reports, 2017, no. 7, 61–65
Citation in format AMSBIB
\Bibitem{Gad17}
\by R.~M.~Gadzhimirzaev
\paper Approximation of functions defined on the grid $\{0, \delta, 2\delta, \ldots\}$ by Fourier-Meixner sums
\jour Daghestan Electronic Mathematical Reports
\yr 2017
\issue 7
\pages 61--65
\mathnet{http://mi.mathnet.ru/demr38}
\crossref{https://doi.org/10.31029/demr.7.7}
Linking options:
  • https://www.mathnet.ru/eng/demr38
  • https://www.mathnet.ru/eng/demr/y2017/i7/p61
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024