Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2016, Issue 6, Pages 31–60
DOI: https://doi.org/10.31029/demr.6.3
(Mi demr28)
 

This article is cited in 7 scientific papers (total in 7 papers)

Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems

I. I. Sharapudinovab, Z. D. Gadzhievaab, R. M. Gadzhimirzaeva

a Daghestan Scientific Centre of Russian Academy of Sciences
b Daghestan State Pedagogical University
Full-text PDF (574 kB) Citations (7)
References:
Abstract: For some natural number $r$ and a given system of functions $\left\{\varphi_k(x)\right\}_{k=0}^\infty$, orthonormal on $(a, b)$ with weight $\rho(x)$, we construct the new system of functions $\left\{\varphi_{r,k}(x)\right\}_{k=0}^\infty$, orthonormal with respect to the Sobolev type inner product of the following form
\begin{equation*} \langle f,g\rangle=\sum_{\nu=0}^{r-1}f^{(\nu)}(a)g^{(\nu)}(a)+\int_{a}^{b} f^{(r)}(t)g^{(r)}(t)\rho(t) dt. \end{equation*}
The convergence of the Fourier series by the system $\left\{\varphi_{r,k}(x)\right\}_{k=0}^\infty$ is investigated. Moreover, we consider some important special cases of systems of such type and obtain explicit representations for them, which can be used in the study of asymptotic properties of functions $\varphi_{r,k}(x)$ when $k\to\infty$ and the approximative properties of Fourier sums by the system $\left\{\varphi_{r,k}(x)\right\}_{k = 0}^\infty$.
Keywords: orthogonal polynomials, Sobolev orthogonal polynomials, Haar system, Jacobi polynomials, Сhebyshev polynomials of the first kind, Laguerre polynomials, Hermite polynomials.
Received: 29.07.2016
Revised: 07.09.2016
Accepted: 08.09.2016
Bibliographic databases:
Document Type: Article
UDC: 517.538
Language: Russian
Citation: I. I. Sharapudinov, Z. D. Gadzhieva, R. M. Gadzhimirzaev, “Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems”, Daghestan Electronic Mathematical Reports, 2016, no. 6, 31–60
Citation in format AMSBIB
\Bibitem{ShaGadGad16}
\by I.~I.~Sharapudinov, Z.~D.~Gadzhieva, R.~M.~Gadzhimirzaev
\paper Systems of functions orthogonal with respect to scalar products of Sobolev type with discrete masses generated by classical orthogonal systems
\jour Daghestan Electronic Mathematical Reports
\yr 2016
\issue 6
\pages 31--60
\mathnet{http://mi.mathnet.ru/demr28}
\crossref{https://doi.org/10.31029/demr.6.3}
\elib{https://elibrary.ru/item.asp?id=29409286}
Linking options:
  • https://www.mathnet.ru/eng/demr28
  • https://www.mathnet.ru/eng/demr/y2016/i6/p31
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024