Daghestan Electronic Mathematical Reports
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Daghestan Electronic Mathematical Reports:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Daghestan Electronic Mathematical Reports, 2015, Issue 4, Pages 74–117
DOI: https://doi.org/10.31029/demr.4.5
(Mi demr19)
 

On the simultaneous approximation of functions and their derivatives by Chebyshev polynomials orthogonal on uniform grid

I. I. Sharapudinovab, T. I. Sharapudinovab

a Daghestan Scientific Centre of Russian Academy of Sciences
b Vladikavkaz Scientific Centre of the RAS
References:
Abstract: The article is dedicated to investigation of approximative properties of polynomial operator $\mathcal{ X}_{m,N}(f)=\mathcal{ X}_{m,N}(f,x)$, which is defined in the space $C[-1,1]$ and based on the use of only discrete values of the function $f(x)$, given in the nodes of uniform grid $\{x_j=-1+jh\}_{j=0}^{N+2r-1}\subset [-1,1]$. This operator can be used for solving the problem of simultaneous approximation of a differentiable function $f(x)$ and its multiple derivatives $f'(x), \ldots, f^{(p)}(x)$. Construction of operators $\mathcal{ X}_{m,N}(f)$ is based on Chebyshev polynomials $T_n^{\alpha,\beta}(x,N)$ $(0\le n\le N-1)$, which form an orthogonal system on the set $\Omega_N=\{0,1,\ldots,N-1\}$ with weight
$$ \mu(x)=\mu(x;\alpha,\beta,N)=c{\Gamma(x+\beta+1) \Gamma(N-x+\alpha)\over \Gamma(x+1)\Gamma(N-x)}, $$
i.e.
$$ \sum_{x\in\Omega_N}\mu(x)T_n^{\alpha,\beta}(x,N)T_m^{\alpha,\beta}(x,N) =h_{n,N}^{\alpha,\beta}\delta_{nm}. $$
There were obtained upper bounds for the Lebesgue functions of an operator $\mathcal{ X}_{m,N}(f)=\mathcal{ X}_{m,N}(f,x)$ and weighted approximations of the following form
$$ {|\frac1{h^{\nu}}\Delta_h^\nu\left[ f(x_{j-\nu})-\mathcal{ X}_{n+2r,N}(f,x_{j-\nu})\right]|\over\left(\sqrt{1-x_{j}^2}+{1\over m}\right)^{r-\nu-\frac12}}. $$
Keywords: Chebyshev polynomials orthogonal on the grid; Chebyshev polynomials of the first kind; approximation of functions and derivatives.
Received: 27.10.2015
Revised: 22.12.2015
Accepted: 23.12.2015
Bibliographic databases:
Document Type: Article
UDC: 517.587
Language: Russian
Citation: I. I. Sharapudinov, T. I. Sharapudinov, “On the simultaneous approximation of functions and their derivatives by Chebyshev polynomials orthogonal on uniform grid”, Daghestan Electronic Mathematical Reports, 2015, no. 4, 74–117
Citation in format AMSBIB
\Bibitem{ShaSha15}
\by I.~I.~Sharapudinov, T.~I.~Sharapudinov
\paper On the simultaneous approximation of functions and their derivatives by Chebyshev polynomials orthogonal on uniform grid
\jour Daghestan Electronic Mathematical Reports
\yr 2015
\issue 4
\pages 74--117
\mathnet{http://mi.mathnet.ru/demr19}
\crossref{https://doi.org/10.31029/demr.4.5}
\elib{https://elibrary.ru/item.asp?id=27311211}
Linking options:
  • https://www.mathnet.ru/eng/demr19
  • https://www.mathnet.ru/eng/demr/y2015/i4/p74
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Daghestan Electronic Mathematical Reports
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :42
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024