Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 1999, Volume 35, Number 9, Pages 1187–1193 (Mi de9993)  

This article is cited in 2 scientific papers (total in 2 papers)

Integral Equations and Integral-Differential

On solutions of the Lotka–Volterra model taking into account the boundedness of the life spans of species of competing populations

N. V. Pertsev

Omsk State Pedagogical University
Received: 14.06.1998
Bibliographic databases:
Document Type: Article
UDC: 517.968.7
Language: Russian
Citation: N. V. Pertsev, “On solutions of the Lotka–Volterra model taking into account the boundedness of the life spans of species of competing populations”, Differ. Uravn., 35:9 (1999), 1187–1193; Differ. Equ., 35:9 (1999), 1201–1207
Citation in format AMSBIB
\Bibitem{Per99}
\by N.~V.~Pertsev
\paper On solutions of the Lotka--Volterra model taking into account the boundedness of the life spans of species of competing populations
\jour Differ. Uravn.
\yr 1999
\vol 35
\issue 9
\pages 1187--1193
\mathnet{http://mi.mathnet.ru/de9993}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1747773}
\transl
\jour Differ. Equ.
\yr 1999
\vol 35
\issue 9
\pages 1201--1207
Linking options:
  • https://www.mathnet.ru/eng/de9993
  • https://www.mathnet.ru/eng/de/v35/i9/p1187
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024